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Abstract—Square fiducial markers are commonly used in
Augmented Reality (AR) applications to affix AR content to a
particular location in the real world. Unoccluded, these markers
are quickly and easily identified, and AR content is realistically
displayed in real time. However, because most square fiducial
marker libraries use a thresholding-based method of detection,
small edge occlusions often prevent markers from being found,
or cause inaccurate estimations of marker pose. Both of these
scenarios result in visual disturbances in the AR content. This
is particularly problematic for hand-manipulated AR objects,
where markers will suffer frequent edge occlusions by fingers.
In this paper, we propose an alternative method of detecting
single square fiducial markers where only two diagonal corners
of the marker must be visible for detection. Our proposed method
finds and classifies corners in the image, pairs candidate diagonal
corners based on their gradient directions, and then attempts to
find a homography between a standard template and corners
in the image that may belong to a marker. Identification of
potential markers is done using a commonly-used square fiducial
marker identification algorithm. This method detects markers
under partial edge occlusions at a rate of up to 2.48x that of
a popular square fiducial library, detects and localizes square
fiducial markers in isolated frames, and is fast enough to be
used for real-time applications.

Index Terms—Augmented reality, marker, occlusion, corners

I. INTRODUCTION

Marker-based Augmented Reality (AR) is a way to affix
virtual content to a particular location in space, making for
engaging, stable and realistic AR experiences. A variety of
marker designs and detection algorithms have been proposed,
with one of the most widely-used designs being square fiducial
markers such as ArUco [1], [2] and AprilTag [3], [4]. These
markers are composed of a black square border surrounding
a black and white bit pattern used to uniquely identify each
marker, and can be quickly and accurately identified and
localized for real-time AR applications.

Because our primary research interest is to create AR games
for therapeutic and diagnostic applications, we use square
fiducial markers frequently. In our research, hand-manipulated
items, such as small wooden cubes, are affixed with markers
to create dynamic and interactive passive haptic AR objects.
This intended use places significant restrictions on marker size,
layout, and encoding scheme; the markers must be visible
even when affixed to a small surface, and several uniquely-
identifiable markers are required. Marker detection needs to

run in real time to create a realistic experience for the user,
and the algorithm needs to be robust against edge occlusions
by fingers that are commonplace in our applications.

Fig. 1. Example of ideal output when overlaying AR content onto an object.

The requirement that has been most difficult to satisfy using
existing marker schemes is robustness to edge occlusions. A
frequent problem with our applications is that a user will hold
an object in such a way that a finger just slightly overlaps
a marker edge, causing problems with marker detection and
localization. Because popular marker libraries such as ArUco
use a thresholding-based approach to find markers, these min-
imal occlusions cause the marker to either not be detected or
cause the marker corners to be estimated incorrectly, resulting
in bad estimations of the position and orientation of the marker
[1]. Both cases cause the projected AR content to be visually
disturbing to the viewer; the AR content will either completely
disappear to show the underlying marker, or the AR content
will be jittery and erratic.

The problem of partial occlusion of markers has been
explored in the existing literature. AprilTag’s original im-
age gradient-based algorithm could handle some partial edge
occlusions [3], at the cost of increased computation time
and reduced identification accuracy, resulting in this method’s
abandonment in future AprilTag versions [4]. ArUco, which
has poor edge occlusion handling for individual markers,
works around the problem of edge occlusions by using marker
“boards” that allow the pose of occluded markers to be inferred
from the pose of un-occluded markers [5]. However, this
method has limited utility for applications involving small
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target objects. Fractal markers, where square fiducial mark-
ers are embedded within one another to improve detection
at varying distances and allow edge occlusions, also have
limited utility for small target sizes, and additionally have
an inadequate number of uniquely-identifiable markers [6].
Contextual approaches that rely on previous detections have
been proposed, such as using a Kalman filter to estimate
marker poses [7] or tracking points of interest between frames
[6], [8]. Though these methods can be complementary to
marker detection algorithms, situations where users maintain
an edge-occluding grip on an object for an extended period
of time or rotate the marker out of view of the camera
create significant gaps in information, resulting in increasingly
erroneous pose estimations over time. Improving the rate of
detection in cases of slight occlusions would provide these
methods with more frequent information and create a more
seamless experience. For these reasons, we have developed an
approach to square fiducial marker detection and localization
that combines the strengths of existing methods and expands
upon them to meet our unique application needs, particularly
the allowance of partial edge occlusions.

We have developed a square fiducial marker detection
method called AR Direction Vector Related Corners (ArD-
VRC) that searches for markers by corners instead of using
a thresholding-based method. The core idea underpinning this
method is that detected corners in an image that belong to a
marker will have a specific relationship with one another; our
method specifically looks for relationships between detected
corners that may indicate that they are diagonal corners of a
marker. If two corners that may be a diagonal pair are found,
the algorithm estimates the intersection points of the corners’
edges to approximate the other two possible outer corners.
This quadrilateral and the corners contained within are then
matched to a standard corner type template of internal and
external marker corners using a nearest neighbor search [9],
and a homography between the template and image corners
is derived using a RANdom SAmple Consensus (RANSAC)
algorithm approach [10]. Marker candidates are identified
using the standard ArUco identification method [1], [2].

The primary contribution of this paper is the development
of a novel method of square fiducial marker detection that can
identify single markers under partial occlusion in real time, and
that works on individual frames in isolation rather than relying
on context from previous marker detections. We evaluate the
ArDVRC method by comparing it with ArUco’s method of
detection and localization, running both on a generated syn-
thetic dataset of 110,000 images and real recorded video data.
Our results demonstrate that our method is capable of running
in real time, is comparable to ArUco’s method in terms of
accuracy for unoccluded objects, and performs significantly
better than ArUco’s method in cases of edge occlusions.
Though our application is targeted towards hand-manipulated
AR objects, the main contribution of our technique can be
utilized for broader interactive applications. ArDVRC sample
code and data is available on GitHub [11].

This paper is structured as follows: we will first discuss

related work, and then provide detailed information about our
method. We will then discuss our experimental design, our
results, our method’s limitations, and future work.

II. RELATED WORK

Square fiducial marker detection algorithms have been pro-
posed that have some resilience to edge occlusions. AprilTag’s
original marker detection algorithm searched for possible outer
marker edges in an image using a gradient-based method,
and was able to handle some cases of edge occlusions [3].
However, as mentioned in their subsequent work [4], the first
version suffered from errors during the identification step,
particularly during cases of partial occlusion. In addition, it
was costly in terms of computation time, and users seldomly
used the partial occlusion feature. For these reasons, the au-
thors switched to an adaptive thresholding method in AprilTag
2 and did not attempt to handle cases of partial occlusion.
Despite its drawbacks, the original AprilTag algorithm inspired
ArDVRC’s method of corner directionality extraction, which
uses an image gradient-based method similar to that used by
the original AprilTag algorithm.

Other marker schemes have been proposed that are able
to handle a significant amount of occlusion. Runetags, a
circular tag composed of several dots, can handle up to 70%
occlusion [12]. However, the framerate is too low for real-time
applications, limiting the utility of this method.

Several solutions have been devised to work around the
occlusion problem of individual markers. One robust method
is the use of marker “boards”, or a multiplicity of markers
in a specific arrangement that can be used to infer the pose
of other markers [5]. While this solves the problem for many
use cases, it has less utility when the target has specific size
requirements. If the target cannot be made to be larger, the
individual markers must be made smaller, to the point where
they may not be adequately detected by a camera.

A recent innovation in square fiducial markers is the Fractal
marker [6], which is a marker with smaller markers embedded
within. This paradigm helps to alleviate distance issues, where
the edges of a marker may be occluded at near distances,
or where smaller markers may not be recognized at further
distances. This is an appealing prospect when considering that
users of our system may move an AR object closer or further
away from the camera. However, this method is still restricted
by the target size. When the largest marker has an occluded
edge, the inner markers could be too small or too far away to
be recognized. Additionally, Fractal markers do not yet have
several unique identifiers, and for our application we want
to have multiple AR objects. Though this paradigm isn’t a
good fit for our application in its current form, this paper
also introduces a corner classification method that classifies
corners by their arrangement of black and white pixels, which
is used to track the marker between frames when the marker
is occluded. Our algorithm uses a corner classification method
that is based on the method described in this paper, but
improves upon it to not only more accurately classify corners,
but to additionally extract corner directionality.
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Contextual information from previous frames can be used to
track markers in conditions where the marker cannot be found
[6], [8], and can also be used as input to a Kalman filter,
which can estimate the pose of a previously detected marker
in future frames [7]. These methods can be used to fill in the
gaps of missing marker detections and to filter out erroneous
poses. Though these methods are often advantageous, these
methods become erroneous when points of interest move out
of sight of the camera, or during extended periods without
any detections. In our specific application where the user is
manipulating a 3D object in their hands, the marker may be
rotated out of view of the camera, or a user may grip the
AR object in a particular way that occludes the marker for
a significant amount of time. To avoid increasingly incorrect
estimations due to these conditions, it would be beneficial
to improve marker detections under these circumstances to
decrease reliance on contextual methods.

In summary, a variety of methods have been proposed
to deal with the problem of edge occlusions. Yet, each has
individual limitations that make it less than ideal for use for
hand-manipulated AR applications.

III. METHOD

A. Custom marker dictionary

Fig. 2. ArUco marker 17.

Due to the size constraints of our
markers and objects, the markers we
use need to be clearly visible at vary-
ing distances. For that reason, ArUco’s
4X4 marker dictionaries are appealing;
the marker has the fewest bits of all
of ArUco’s marker dictionaries, mean-
ing the black and white squares are
as large as possible, yet many unique
IDs can be generated. However, some

markers in ArUco’s 4X4 marker dictionaries are visually
simplistic and can be confused with naturally-occurring shapes
in the environment, resulting in false positives. Marker number
17, for example, is simply a white square, and is frequently
falsely identified in indoor environments.

The reason marker number 17 is part of the ArUco 4X4 dic-
tionary is because it has a high intra-marker Hamming distance
(the minimum Hamming distance between all four rotations of
the marker) and a high inter-marker Hamming distance (the
minimum Hamming distance between the marker and every
rotation of every other marker in the dictionary). To put it
simply, each ArUco marker was designed to be distinguishable
from all other markers and itself for all rotations of the marker,
and marker 17 fits this criteria.

In addition to marker number 17’s tendency towards false
positives, marker number 17 also has the fewest number of
corners possible, which is 8 (4 outer corners and 4 inner
corners). Because ArDVRC is based on finding the outer and
inner corners of the marker, we want the marker to have as
many corners as possible to improve our chances of detection.
By that metric, marker number 17 is the worst-case scenario.
We want each of the markers in the dictionary to not only be

optimized for high inter- and intra-marker Hamming distances,
but to be optimized for entropy as well.

For these reasons, we created a custom dictionary that is
a subset of ArUco’s DICT 4X4 100 dictionary. We chose
to use a subset of an ArUco dictionary because ArUco
dictionaries are already optimized in terms of intra- and inter-
marker Hamming distances. By selecting a subset of these
markers, we only stand to improve the inter-marker Hamming
distances while selecting the markers with the highest entropy.

To select our marker subset, we first iterate through each
marker in the dictionary and calculate the number of internal
and external corners and the intra-marker Hamming distance.
We then select thresholds for these marker qualities, choosing
our threshold values to produce a target of 50 markers.
Towards this goal, we chose markers with a minimum intra-
marker Hamming distance of 6 or greater, and a minimum
corner count of 17 or greater, resulting in a marker set of
64 markers. The minimum inter-marker Hamming distance
of our chosen set is 3. We use this custom corner-optimized
and Hamming distance-optimized dictionary in place of the
DICT 4X4 100 dictionary for both ArDVRC and ArUco
detection algorithms to ensure an equal comparison.

B. ArDVRC marker detection algorithm

1) Corner classification and direction estimation: The first
step in the ArDVRC algorithm is to locate and classify corners
within the image. To locate corners we use the Harris corner
detection algorithm [13] and a corner peak detection algorithm
[14]. Once the corners are located within the image, we
classify the corners and estimate each corner’s edge directions.

Ty
pe

 1

Raw |Gx| |Gy| |G|

Ty
pe

 2
Ty

pe
 3

Fig. 3. Image gradient-based approach used to find the two direction vectors.
The image is then divided into four quadrants for corner classification.

Inspired by the corner classification technique used in the
Fractal markers paper [6], we classify the corners in the image
by whether they are mostly white (type 1), mostly black (type
2), or a checkerboard pattern (type 3), and reject corners that
do not fit into these categories. An illustration of each of these
types of corners can be seen in the first column of Figure 3.

Our method differs from the Fractal method in that we use
an image gradient-based approach to classify corners instead
of counting black and white pixels, making our method more
resilient against misclassification. Additionally, we use the
image gradients to estimate corner directionality.
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Get marker image from camera Find corners, classify by pattern Determine type 1 corner direction vectors

Match corner template to marker for 
corner refinement

Start

Find intersections between candidate 
diagonal corners

Identify marker, overlay AR content

ID 20

Fig. 4. Method overview.

Classification and direction estimation begins by selecting
a small region of interest (ROI) around each corner in the
image. We apply a Sobel operator to the ROI to get the image
gradients in the x and y directions, and then find the gradient
magnitude and direction of each pixel. We take the absolute
value of the x and y gradients, shown as |Gx| and |Gy| in
Figure 3, and find the maximum value along the border of
both |Gx| and |Gy|. The θ angle value at these two pixel
locations provide direction vectors that are used to draw the
lines shown in Figure 3. For valid corners, the two lines should
closely align with the edges in the ROI.

The ROI is then segmented into four quadrants along these
two lines, and normalized between 0 and 1. Each quadrant
of pixels is averaged to determine if the pixels are mostly
white (> 0.5) or mostly black (<= 0.5). This reduces the
information in the ROI to a series of four binary values, the
arrangement of which indicates the corner type. All rotations
of the sequence {1, 1, 1, 0} indicate a type 1 corner, all
rotations of the sequence {0, 0, 0, 1} indicate a type 2 corner,
and all rotations of the sequence {1, 0, 1, 0} indicate a type
3 corner. Any corner that is not categorized as one of these
three types is labeled 0 and considered unknown.

The information gained about corner type and directionality
guides our search for markers within the image by helping de-
termine which corners pairs may have a diagonal relationship.

2) Corner direction extrapolation: Once we’ve classified

Corner

Direction vector

Extrapolation

Intersection

A

B

Fig. 5. A corner pair with singular inter-
sections. Each vector crosses one vector
from the other corner.

the corners and calcu-
lated their direction, we
can search for candidate
markers within the image.
We do this by search-
ing for two type 1 cor-
ners that may be diagonal
outer corners of a marker.
Good candidate corner
pairs will have direction
vectors that have singular
intersections with each
other; as illustrated in Figure 5, each vector from corner A
intersects with a vector from corner B, but no vector from

corner A intersects both vectors of corner B (and vice-versa).
To find good candidate corner pairs, we extrapolate the

direction vectors to find the intersections between all type
1 direction vectors. This is accomplished by tiling type 1
vectors vertically and horizontally in two matrices, and then
calculating the intersections of the two matrices. This results
in a symmetric matrix composed of 2D points for vectors that
intersect and NaN values for vectors that do not.

Because there are two direction vectors per corner, the
intersections of two corners can be represented as a 2X2
matrix containing some combination of 2D points and NaN
values. A singular intersection for this 2X2 matrix will have
two 2D intersection points and two NaN values, arranged in a
checkerboard pattern. If the two type 1 corners have singular
intersections, the corners are combined with their intersection
points to create an array of four corners, which will be used
as a starting point for template matching.

3) Template matching: All square fiducial marker corners

Type 1

Type 2

Any type

Fig. 6. Marker corner template.

that have a solid black bor-
der adhere to a standard cor-
ner type pattern that can be
seen in Figure 6. The outer
corners of the marker are all
of type 1, are always present
and always have a consis-
tent direction. The corners
one level inward are all type
2, are not always present
and do not have a consistent
direction. Corners further inward can be of any type and have
any direction, and may or may not be present.

We relate this template to the candidate corners by finding
a homography that aligns the template with the candidate
corners. We then use Picoflann’s KDTree implementation to
do a nearest neighbor search between the transformed template
points and the image corners [9]. Three KDTrees are used,
with one for each template type. A RANSAC algorithm is used
to find a homography between the template and the corner
points [10], and the outer corners are then used as input to
ArUco’s identification method.
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IV. EXPERIMENTAL SETUP

Experiments were carried out with both synthetically-
generated data and real data. There are two reasons why we
chose to generate synthetic data: first, the ground truth infor-
mation (ID and position of the ArUco marker) is not known
for every frame of real data without painstaking analysis of
each frame. By generating the data, we have exact ground truth
information with which we can compare our algorithm and the
ArUco algorithm. Second, generated data can be manipulated
precisely to create the exact conditions that we want to test
our algorithm against, such as different blur or lighting effects.

Control Edge occlusion

Noise Background shapes

Motion blur Lighting

Fig. 7. A sample of the generated synthetic dataset.

We additionally tested our algorithm using recorded videos
to ensure that our algorithm would work on real-world data.
Though there’s no ground-truth data available for these videos,
we’re able to count marker detections for both ArDVRC and
ArUco for comparison, and can qualitatively assess the marker
detection behavior between the two methods.

A. Synthetic generated data

A synthetic control dataset of 10,000 images of individual
markers was generated that randomizes the ID, pose and size
of the marker within the image. In order to simulate a variety
of realistic conditions that may be encountered during normal
operation, five common circumstances for hand-manipulated
AR content were simulated in the dataset: finger occlusions,
sub-optimal image quality, noisy background environments,
motion blur, and reduced lighting conditions. These real-
world conditions were synthesized by adding noise, blur
filters, background shapes, and foreground shapes, and by
manipulating the image contrast of the control dataset. Each
of these conditions had their own dataset of 10,000 images.
Performance was assessed by determining (a) whether the
algorithm is able to correctly identify markers within the
image, (b) how close the corner estimates are to the ground

truth information, and (c) whether the algorithm is capable of
running in real time. We tested our algorithm on our control
dataset and these five simulated conditions (a total of 60,000
images). We then compared our results and ArUco’s results to
the ground truth data.

To further examine performance for occluded markers, we
generated an additional 50,000 marker images with edge
occlusions. This data was used to compare each method’s
performance for different percentages of occlusion. In total,
our synthetic dataset consisted of 110,000 images.

Data generation was done in Python, and was accomplished
using the OpenCV library [15] and Scikit-Image [14]. These
images were stored as TIFF files with all of the ground truth
information stored as metadata within each image. Figure
7 shows samples of our control images and the different
manipulations that were applied to the images.

B. Real data

We have created an AR cube using the first 6 markers from
our custom high-entropy dictionary (IDs 0-5), and recorded 3
minutes-worth of video clips of this cube being manipulated
by hand, purposefully introducing slight to significant finger
occlusions across the markers. We process these videos using
ArUco and ArDVRC, and draw the detected IDs onto the cube.
This data is analyzed by considering the number of detections
for both methods on the same data, and also visually assessing
the projection behavior for both methods.

V. RESULTS

A. Synthetic generated data

The following subsections examine the results from the syn-
thetic data. Each subfigure in Figure 8 shows the identification
rate and error rate for that set of 10,000 images, as well as
a histogram of the corner counts and their position error. It
should be noted that for each of these figures, the y axis is on
a logarithmic scale to make the results more clearly visible.

1) Control data: Figure 8 (a) shows a comparison of
ArDVRC and ArUco accuracy on the control dataset. The
control dataset is indicative of how each algorithm behaves
under optimal conditions where no blur, noise, shadows, or
occlusions are present. The results show that both methods per-
form quite well on this dataset. The ArUco algorithm slightly
out-performs ArDVRC by correctly identifying 99.31% of the
dataset while ArDVRC correctly identified 98.61%. ArUco
additionally has a slightly lower error rate for corner positions.

2) Edge occlusions: The edge occlusion dataset, composed
of marker images with a single elliptical edge occlusion, is
meant to simulate the presence of a finger occlusion on the
marker’s edge, and is the data of most interest to us for
our application. Figure 8 (b) shows that ArDVRC performs
significantly better than ArUco in cases of edge occlusions.
For this dataset, ArDVRC successfully identified 70.14% of
the markers in the dataset, while ArUco identified 28.23% of
the markers and had a higher error rate than ArDVRC. In
other words, the ArDVRC method was able to identify 2.48x
more markers than ArUco, and estimated the marker corner
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(a) Control data
ArDVRC
Identified: 98.61%
Error: 1.30 ± 1.07 px
ArUco
Identified: 99.31%
Error: 0.93 ± 1.28 px
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(b) Edge occlusions data
ArDVRC
Identified: 70.06%
Error: 1.50 ± 1.66 px
ArUco
Identified: 28.04%
Error: 1.80 ± 3.72 px
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(c) Noise data
ArDVRC
Identified: 93.38%
Error: 1.62 ± 2.92 px
ArUco
Identified: 97.88%
Error: 1.16 ± 2.33 px
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(d) Background shapes data
ArDVRC
Identified: 98.88%
Error: 1.30 ± 1.09 px
ArUco
Identified: 99.32%
Error: 0.94 ± 1.28 px
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(e) Motion blur data (K=20)
ArDVRC
Identified: 74.90%
Error: 4.17 ± 6.27 px
ArUco
Identified: 93.51%
Error: 2.53 ± 1.10 px
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(f) Lighting data
ArDVRC
Identified: 98.60%
Error: 1.31 ± 1.26 px
ArUco
Identified: 98.80%
Error: 0.87 ± 1.34 px

Fig. 8. Results from the control data and the five different manipulations of that data. Subfigure (b) shows that ArDVRC has a significantly higher detection
rate and higher corner accuracy than ArUco for partially-occluded markers.

locations more accurately as well. It is worth noting that for
this dataset, the locations, sizes and shapes of the ellipses
in the images are random, and therefore some occlude the
marker to such a degree that the marker couldn’t possibly
be uniquely identified. If we modified this dataset so that
all 10,000 images could theoretically be identified, we would
likely see the identification rate improve for each method.
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Occlusion percentage (%)

0

20

40

60

80

100

De
te

ct
io

n 
pe

rc
en

ta
ge

 (%
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Fig. 9. Detection rate vs. percent occlusion for ArDVRC and ArUco.

We additionally examined the effect of occlusion percentage
on the detection rate for each algorithm using a dataset
of 50,000 partially-occluded marker images. The results of
this comparison can be seen in Figure 9, which shows that

while ArUco has significantly reduced detections for 5%
occlusion, ArDVRC has a more gradually-declining detection
rate, demonstrating its robustness against edge occlusions.

3) Noise data: The noise dataset simulates reduced image
quality by adding speckling in the foreground. The results
displayed in Figure 8 (c) show that ArDVRC is less resilient to
noise than ArUco, but that it still performs well. ArUco iden-
tified 97.88% of the markers in this dataset while ArDVRC
identified 93.38%. As with the control data results, ArDVRC
had a slightly higher corner position error than ArUco.

4) Background shapes: The background shapes dataset
simulates a busy background environment. Because ArDVRC
is corner-based, we wanted to see if the presence of a signif-
icant number of corners would cause problems such as false
detections or reduced identification rates. Interestingly, both
ArUco and ArDVRC improved their identifications slightly on
this dataset compared to the control, as seen in Figure 8 (d),
and the error rate for both remained largely the same. There
were additionally no false detections for either method.

5) Motion blur: This dataset simulates fast head or hand
movements by the user. ArDVRC’s and ArUco’s performance
on motion blur data is heavily dependent on the amount of
blur in the image. Figure 8 (e) shows results for a blur kernel
of 20 pixels, but we additionally calculated results for blur
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kernels of 10 and 30 pixels. For a blur kernel of 10 pixels, both
algorithms perform well. However, for a kernel of 30 pixels,
ArDVRC detects only 4.45% of the dataset while ArUco is
able to identify 75.84%. The accuracy of both degrade as
the blur becomes more significant, but ArUco outperforms
ArDVRC in instances of high motion blur. This is further
discussed in the Discussion section.

6) Lighting: Poor lighting conditions were simulated by
reducing the contrast of the control images by 50%. ArDVRC
and ArUco both performed well on this dataset, with identifi-
cation rates of 98.6% and 98.8%, respectively. ArDVRC had
a slightly higher corner position error than ArUco.

B. Real data
Three minutes of video of a person manipulating a black

and white marker cube was processed using both ArUco and
ArDVRC. Figure 10 shows stills from the video sequence.
The number of cube detections for both methods were counted
and compared. In total, ArUco detected the cube 6383 times
while ArDVRC detected the cube 8816 times, meaning that
ArDVRC had 1.38x as many marker detections as ArUco.
Though this rate is lower than the edge-occluded synthetic
data, this is expected because the marker did not have edge
occlusions in every frame of the video. Qualitatively, both the
ArUco and ArDVRC corner detections looked to be aligned
with the cube. This shows that for real-world conditions
involving frequent partial occlusions, the ArDVRC method is
able to detect markers at a higher rate than ArUco, which is
key to providing a more seamless AR experience.

C. Real-time performance

Dataset Avg. runtime [ms]
Control 7.943 ± 5.048
Noise 16.883 ± 6.027

Motion blur 8.163 ± 5.139
Shapes 37.055 ± 14.038

Occlusions 7.573 ± 5.665
Lighting 7.341 ± 5.167

Because we intend to use this software for real-time games
and therapeutic activities, our goal was to keep the algorithm
runtime less than 30 ms per frame. We’ve mostly made it to
this goal except for the background shapes data, as shown
in the table above. It’s worth noting that the runtime of this
algorithm is a function of image size (corner detection and
image gradients) and number of corners found within the
image. As shown in Figure 7, the background shapes image
has the most corners of all of the datasets. The more candidate
corner pairs are found, the higher the computational workload.
However, this method lends itself well to parallelization, and
we were able to parallelize the code to the point where the
bottleneck became OpenCV’s RANSAC function. The above
table shows the average runtimes for each dataset.

VI. DISCUSSION

The results show that ArDVRC and ArUco have their own
strengths and weaknesses depending on the context, but that

ArDVRC significantly outperforms ArUco in ability to detect
markers under partial occlusion. This is because ArUco’s
detection algorithm uses a thresholding-based approach to
find markers, and will determine marker candidates based on
whether the contours of a shape in the thresholded image
approximate a quadrilateral [1]. Because edge occlusions will
often disturb the shape of the marker in the thresholded image,
even mostly-visible markers will often not be considered as
possible candidates; those that are considered and correctly
identified often suffer from erroneous corner estimations,
which in turn affects the pose of the AR content. Removing
the requirement that the entire square be visible in favor of
a technique based on visible corner information increases the
number of detections under partial occlusion and improves the
marker corner estimations for partially-occluded markers.

As shown in the the Results section, ArDVRC had 2.48x
more detections for the synthetic partially-occluded data than
ArUco, and had 1.38x more marker detections than ArUco for
real video data with frequent partial occlusions. Additionally,
we’ve shown that ArDVRC can handle higher occlusion per-
centages than ArUco. This demonstrates that the ArDVRC
method could be a viable alternative to thresholding-based
methods of marker detection, especially when the application
is expected to encounter frequent edge occlusions. These
increased detection rates could help alleviate some of the
visual disturbances arising from problems of partial occlusion.

Figure 8 shows a few cases of high pixel error for the ArD-
VRC method in different datasets. This is because occasionally
the direction vectors for a corner are not well-aligned with the
marker edge, particularly in cases of blur and image noise, and
therefore the intersections of the vectors are significantly far
from where they should be. Because the initial corner estimate
is poor, the template matching step isn’t able to match corners
appropriately and the poor initial estimate is used for the
identification step. Usually markers with poor corner estimates
are rejected during the identification step because the candidate
marker image has significant flaws, but on rare occasions a
marker is identified. These occurrences can likely be reduced
by ensuring a minimum number of matched corners during the
template matching step, or by using an identification algorithm
that takes internal corners into account.

Neither ArUco nor ArDVRC performs exceptionally well
for high-blur situations, and the results show that ArDVRC
fails sooner than ArUco. This is because as the blur increases,
the corner pixels are more difficult to locate and the corner
directions become less defined. However, an adaptive thresh-
olding technique like the one used for the ArUco algorithm
will likely still be able to find the square shape of the marker,
and will therefore be more robust to blur. A potential way
to alleviate performance issues in high blur situations for
ArDVRC would be to fall back to the ArUco algorithm when
the ArDVRC method fails to detect a marker.

The ArDVRC algorithm currently relies on ArUco’s method
of identification that warps the candidate corners to a square
ROI, segments the image into bits and identifies the marker
based on the extracted information. We are interested in ex-
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Fig. 10. Video sequence stills comparing ArUco detection (top) and ArDVRC detection (bottom).

ploring whether the corner types, template-matched locations
and direction vectors provide enough information to uniquely
identify the markers, or if a corner-based method may be able
to match the visible portion of an occluded marker to possi-
ble candidates. This could provide further robustness against
partial occlusions in situations where the marker corners may
be found but the marker is rejected at the identification step.

The ArDVRC template matching step uses the RANSAC
algorithm to find the best homography between the template
points and the image points. While this works well overall,
RANSAC is currently the greatest bottleneck in the program.
We would like to explore the use of PROSAC [16] as an
alternative to RANSAC in future works, as it is generally much
faster than RANSAC and should produce similar results if the
corresponding corners are thoughtfully ordered.

Finally, the data showed that in many cases, ArDVRC
had slightly higher corner estimation errors than ArUco. This
difference in error is generally one or two pixels, and is small
enough that in most cases it will not be noticeable when
drawing the outline of the marker onto an image. However,
more research is needed to determine what effect, if any, these
slightly increased error values have on the estimated marker
pose, and therefore the projection of AR content.

VII. CONCLUSION

In this paper we have proposed a novel method of square
fiducial marker detection and localization by finding diagonal
marker corners using corner classification and direction vector
extrapolation. We have demonstrated this method’s ability to
outperform popular square fiducial marker detection methods
in cases of frequent partial edge occlusions, and have demon-
strated detection rates up to 2.48x that of thresholding-based
detection methods for partial edge occlusions. This approach
can be used to help alleviate common problems with exist-
ing square fiducial detection and localization algorithms that
frequently do not detect markers with partial edge occlusions,
or that provide erroneous marker corner estimates under these
conditions. Our algorithm works for single images or video
sequences, is able to run in real time, and shows promise as
an alternative method for marker-based AR to provide more
seamless interactive AR experiences.
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