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    
     
     
     
    
    


    
     

     
     

      

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memory size to hold the infinite three 

dimensional space and the computational cost 

of subdivision processing. But employing 

spatial hashing with a regular grid, 

subdivision processing became trivial and a 

smaller size of memory can be used to hold 

infinite cells. 

  

 

Figure 1: The voxel indexes (1-6) for grid 

cells are at the left top corner of each cell. 

Gray dots and white dots are unnecessary 

collision check pairs. The gray pair is well 

separated, but they are mapped into voxel 4. 

The white pair is mapped into voxel 5 due to 

hash collision. 

 

Despite the recent improvement on spatial 

subdivision using spatial hashing, it is still 

considered slower than a Voronoi based 

method [15]. The inefficiency of spatial 

hashing based method is caused by the 

unnecessary collision checks. In Fig. 1, the 

cases of unnecessary collision checks are 

illustrated caused by hash collision and the 

inefficiency of a grid set-up. Hash collisions 

can be removed by using perfect hash 

functions, but it may require pre-processing 

and extra storage. The inefficiency of a grid 

set-up is originated from the nature of spatial 

hashing where objects are spread among 

neighboring regularly divided voxels. We 

resolved the inefficiency of spatial hashing by 

adding an inner-voxel culling, which 

substantially alleviates the effect of hash 

collision. Specifically our empirical studies in 

various setup consistently shows that our 

method improves the performance of a spatial 

hashing based culling by approximately three 

orders of magnitude. Our method has no 

limitations or assumptions of accuracy and 

topology change for both inter- and 

self-collisions. Furthermore, we utilized 

parallelism to take benefits of available 

multi-core architecture. Our method has been 

implemented on dual-core and quad-core 

using the open multi-processing (OpenMP) 

application program interface (API) [33].  

2. PREVIOUS WORK 

Overall collision detection is surveyed by 

Jimenez et al [4] and collision detection 

among deformable objects is well 

summarized by Teschner et al [5]. In this 

section, we will highlight previous culling 

methods in four categories (BVH-based, 

GPU-based, Voronoi-based, and 

spatial-hashing-based) and consider parallel 

collision detection for deformable object 

simulation. 

2.1 BVH-Based Methods 

There are many approaches based on BVH for 

deformable object simulation such as aligned 

axis bounding box (AABB) [17], [18], [19], 

spheres [20], [21], oriented bounding box 

(OBB) [22], and discrete oriented polytope 

(DOP) [23]. The challenge of using BVH is 

the cost of updating the hierarchy. Hierarchy 

update [24] for limited-deformation models 

such as meshless deformation and modal 

analysis can be done very efficiently. But still 

it is not efficient for self-collision. In order to 

improve performance for self-collision an 

additional culling process using curvature of 

surface must be performed. It is quite 

expensive and inefficient for objects like cloth 

patches are folding itself with busy pattern. 

2.2 GPU-Based Methods  

Many researchers utilize advanced GPU 

power for collision detection. Image-based 

collision detection has been introduced for 
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convex objects [27] and extended for 

non-convex objects [28]. Layered depth image 

(LDI) has been proposed for objects with 

closed surfaces [29]. These methods highly 

depends the image resolution. The other trend 

of GPU-based methods is utilizing hierarchy 

[30], [31], [32].  All these methods did not 

deal with the limitation of GPU such as the 

size of memory and delay on read-back. 

Govindaraju et al [33] achieved a fast culling 

only for self-collision and recently Zhang and 

Kim proposed AABB streaming [26] to 

overcome the limited memory size and 

minimize the read-back data, but they ignore 

self-collision. Each method is fast, but cannot 

perform inter-object collision and self 

collision at the same time. 

2.3 Voronoi-Based Methods  

A fast culling method for deformable objects 

has been achieved using discrete Voronoi 

computation on GPUs [15]. This method has 

no limitations on topology change, but there is 

a minimum computation cost to set up GPU.   

2.4 Spatial-Hashing-Based Methods  

Spatial hashing has been successfully 

employed in the spatial sub division method 

for collision detection of rigid body 

simulation and deformable object simulation 

[1], [3], [6]. A spatial hashing for deformable 

objects proposed by Teschner et al. [3] used a 

limited size of data structure and a simple 

spatial hash function for tetrahedron. They 

computed only static collision contact triangle 

and barycentric coordinates. Recently Eitz and 

Lixu [16] introduced a hierarchical spatial 

hashing using one dimensional array with 

DJB2 hash function. Their method ran 

consistently for different cell sizes with a 

slight computational overhead, but the issue 

of hash collision was not considered seriously. 

A perfect spatial hashing was tried with 

pre-computation and applied to collision 

detection between objects by Lefebvre and 

Hoppe [7]. Although each voxel will take one 

spatial cell, a perfect hashing requires a large 

number of voxels to hold all the cell and it has 

to know the number of voxels a priori. For 

deformable objects simulation the number of 

required voxels changes at each step. 

Moreover, the irregularity of the number of 

triangles in voxels is inevitable in regular 

voxel grids because the mesh has different 

resolutions. All previous methods 

decomposed the problem for static collision 

detection without considering the unnecessary 

collision checks caused by hash collisions or 

by the result of inefficient grid set-up. 

However, our experiment shows that the 

unnecessary collision checks are a major 

problem on spatial-hashing-based culling. 

2.5 Parallel Collision Detection   

Many different approaches have been 

proposed for parallel collision detection. 

Voxel-based parallel collision detection [2] is 

implemented to determine colliding objects 

on CHARM++, which is the object-based 

parallel programming environment with a 

dynamic load balancer. Their design needs 

many communications between nodes because 

they used distributed memory for voxels. 

Especially for the objects overlapped in many 

places, communication overhead impedes the 

performance. While a linear scalability of 

parallel processing can be achieved, the 

performance of voxelization is slow because it 

is based on culling without computing crucial 

collision information such as collision points, 

penetration depth and colliding time. They 

have focused on collision detection only 

between static objects. The performance and 

the scalability can be lowered by applying 

exact collision detection for close primitive 

pairs in a highly dynamic environment. 

Overlapping axis aligned bounding box 

(OAABB) collision detection scheme [8] was 

proposed in parallel processing using 

OpenMP in a shared memory system. 

OAABB can be efficient in inter-objects 

collision detection, but it cannot work 

efficiently to self-collision. Parallel collision 

detection for cloth simulation [9] is proposed 
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on a distributed memory system creating local 

task pools of AABB collision checking using 

a hierarchy structure. Employing AABB in 

hierarchy will not perform efficiently for 

self-collision in parallel computing, since 

objects are often close enough, and therefore 

all recursive searches must reach to the leaf 

nodes of the hierarchy.  

We extended spatial-hashing-based method 

for parallel computation to handle general 

deformable objects. Our parallel scheme is 

implemented independently from modeling or 

numerical solvers, so that it can be coupled 

with any other parallel simulation techniques. 

We examined our method by conducting three 

benchmarks with many collisions and 

contacts. 

3. OVERVIEW  

The key idea of our method is working over 

the input primitives directly regardless of the 

number of objects, so the runtime complexity 

of our method is O(n) where n is the number 

of primitives (e.g., triangles or tetrahedral). 

Our algorithm consists of four steps: updating 

the 26 DOP of each triangle, spatial hashing 

(mapping AABB of triangles into the fixed 

number of voxels), culling of the primitives in 

each voxel using 26-DOPs overlapping test 

and surface normal test, and exact collision 

detection with 26-DOPs overlapping tests for 

the element pairs. Compared to a traditional 

spatial-hashing-based method, the two culling 

steps are added. No preprocessing or extra 

data structure is needed for our method. The 

whole process is illustrated in Fig. 2. 

4. METHOD 

4.1 26 DOP Update  

The planes of 26-DOPs have following 

normal vectors; <1,0,0>,  <0,1,0>, <0,0,1>, 

<1,1,0>, <1,-1,0>, <0,1,1>, <0,-1,1>, <1,0,1>, 

<1,0,-1>, <1,1,1>, <1,-1,1>, <-1,1,1>, 

<-1,-1,1> and their opposite vectors. Since 

many applications require exact collision 

detection for both continuous collision 

detection and distance calculation, the 

26-DOPs of each primitive cover the entire 

trace of the primitive in a given period. The 

threshold of distance calculation (e.g., the 

thickness of repulsion force field) is added to 

the total DOPs. Overall DOP update is quick 

because there is no hierarchy to traverse. For 

further optimization, the DOPs of static 

objects in a given scene are not updated. 

 

 

Figure 2: Four steps of culling based on 

spatial hashing are shown. The proposed 

two-level culling is at the third and the fourth 

step. The element level culling and exact 

collision detection are combined to save the 

storage of potential collision pairs. 

4.2 Spatial Hashing  

In order to perform spatial hashing on objects, 

the size of a cell and the number of voxels for 

a given scene must be known before mapping 

primitives to voxels. The size of a cell and the 

number of voxels do play an important role in 

performance optimization but there is no 

definitive formula for optimal values due to 

the diversity of geometric structures, 

granularities of primitives, and topology 

changes of deformable structures. As 

Teschner et. al [3] suggested, a large hash 

table size would contribute to the reduction of 

hash collisions, but too large hash table size 

could incur memory management issues to 

actually decrease the overall performance. 
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The cell grid size should also strike a balance; 

the number of primitives in a cell should be 

reasonably controlled and a primitive should 

not be disperses to many neighboring cells.   

In our algorithm, the size of cell and the 

number of voxels are computed in the 

beginning of each simulation once and kept 

constant during the simulation. The length of 

the largest axis of 26-DOPs of triangles is 

used for the cell size, and 20 percent of the 

number of triangles is used for the number of 

voxels. While these parameters can be further 

tuned, it is rather a conservative arrangement 

to warrant general applicability and objective 

performance evaluation. When objects in the 

scene do not move, the objects are voxelized 

once and keep the information for each 

voxelization. 

4.3 Inner Culling 

In conventional spatial hashing method, all 

candidate primitive pairs are thrown into 

exact collision if culling is failed on them. 

Inner culling method goes one step further to 

see if the primitive pairs do require exact 

collision detection before performing exact 

collision detection. Inner culling is performed 

in two levels: the 26-DOPs of primitives with 

surface normal test and for the 26-DOPs of 

elements (point, and edge). 26-DOPs of each 

primitive are updated and stored at the 

beginning. 26-DOPs of elements are 

calculated later for the element level culling.  

 

Primitive Level Culling: As the first step in 

inner culling procedure, 26-DOPs overlapping 

tests for the primitives in each voxel are 

performed. Previous approaches performed 

direct collision checks for all primitives in a 

voxel. Since 26-DOPs are tightly 

approximating the primitive, the number of 

possible collision pairs for the exact collision 

detection has been reduced significantly. The 

primitive pairs mapped into the same voxel 

due to the hash collisions can be culled out 

efficiently in this step. When building the list 

of the potential collision pairs, there might be 

duplicated pairs. However since the primitives 

are well culled by spatial hashing, the number 

of the duplicated potential collision pairs are 

relatively small. If we want to completely 

eliminate the redundancy, the algorithm 

becomes very expensive while the expected 

performance advantages would be relatively 

small to justify the overhead.  

 

Surface Normal Test: 26-DOPs overlapping 

tests for the primitives are not efficient for 

self-collision among thin objects like cloth 

because neighboring triangles are always 

overlapping. After performing 26-DOPs 

primitives overlapping test, if the potential 

collision pairs are in neighboring each other 

(sharing at least one node), the dot product of 

the surface normal vectors of two adjacent 

primitives is calculated. If the dot product of 

the surface normal vectors is greater than the 

threshold (-0.9 or close to -1.0), the pair is 

culled out from exact collision detection. The 

threshold should be different for the thickness 

of the repulsion force field. This may allow 

self collisions by degenerate elements (see 

figure 3) undetected, but this exceptional case 

should be better handled and prevented by the 

more accurate modeling.  

 

Figure 3: The gray degenerate (very thin and 

long) triangle is located between two normal 

neighboring triangles.  

 

Element Level Culling: For further culling 

after the primitive level culling, we employed 

the element level culling which is inspired by 

the work of Hutter and Fuhrmann [14]. Before 

performing 15 triangle/point and edge/edge 

collision checks between two triangles or any 

other primitive pairs, we calculated the 

26-DOPs of points and edges. 26-DOPs 

overlapping tests were performed between the 

26-DOPs of primitive and the 26-DOPs of 
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element, and between the 26-DOPs of element 

and the 26-DOPs of element. Hutter and 

Fuhrmann [14] employed lower order 

18-DOPs for the element culling, but we 

found that the 26-DOPs are more efficient and 

the overhead for calculating more degrees of 

DOP is trivial. 

4.4 Exact Collision Detection  

The possible element pairs are checked to find 

the exact collision time and the collision 

location (barycentric coordinates) by the 

coplanar condition method described by 

Bridson et al [18]. The exact collision 

detection has been performed with the 

element level culling of the 26-DOPs 

overlapping test to save the storage for the 

possible collision pairs. If a collision is found, 

the redundant check is performed over the 

collision result (the list of triangle/point pair 

and edge/edge pair) to remove the redundant 

collision detection pairs. After this process, 

the collision detection result is reported for 

collision resolution (e.g., the list of 

triangle/point and edge/edge pairs with 

collision time and collision location: 

barycentric coordinates) 

5. PARALLELIZATION  

The parallelization of our method has been 

done in four separate steps because the shared 

memory for voxels and collision results must 

be synchronized for the next step after each 

step is finished. In the 26-DOPs update step, 

there is no shared data. Only one time 

synchronization is required after each 

processor performs update for the 26-DOPs of 

primitives. In the spatial hashing step, the 

memory of voxels is shared and maintained 

by applying critical regions for tagging a cell 

to its voxel and adding a primitive to the 

voxel. In the primitive level culling step, the 

memory of the potential collision pair list is 

shared. In the element level culling and exact 

collision detection, the list of the collision 

pairs is shared and maintained by applying 

critical regions on add-operations. After each 

step, the shared memory is synchronized 

among all the participating processors. 

6. EXPERIMENTS  

6.1 Benchmarks  

Our method was applied to three different 

simulation scenarios involving many 

collisions and sustained contacts to analyze 

the performance in various conditions. 

 

Benchmark 1(14 tori simulation): each torus 

consists of 800 triangles and 14 tori are 

located randomly at the initial state and piled 

up on the floor. The 14 tori are modeled by 

mass-spring system similar to the model 

described by Ko and Choi [35]. This example 

has an increasing number of collisions (for 

both inter/self collision) as the 14 tori pile up. 

The total simulation step is 1,900 and the 

snapshots of 14 tori simulation are shown in 

figure 4. 

 
Figure 4: 14 deformable Tori are piled up    

 

Benchmark 2(Bunny and cloth simulation): a 

cloth patch modeled by 100 by 100 particles 

and 20K triangles is falling on the Stanford 

bunny model with 60K triangles. The cloth 

patch is also modeled with mass-spring 

system similar to the 14 tori simulation. The 

total simulation step is 4,500. The snapshots 

of bunny and cloth simulation are shown in 

figure 5. In this example, the bunny model is 

once mapped to the voxels and the resulted 

voxels are kept throughout simulation without 

update.  
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Figure 5: Bunny and cloth simulation: at the 

time step 1 (top left), 2050 (top right), 6000 

(bottom). 

 

Benchmark 3(1,014 alphabets simulation): 

each letter is modeled with approximately 900 

triangles and the total triangles in the given 

scene are about one million. 1,014 letters are 

falling to the floor with random initial 

condition as shown in Figure 6. The letters are 

modeled by meshless deformation using 

FastLSM [34] and free-form deformation 

(FFD) AABB is used as the primitives for 

collision detection and resolution. The letters 

have 11 lattices, and the total primitives are 

11,000. Collision detection and resolution is 

done by using FFD AABB which is distance 

calculation for each FFD AABB. 

 

Figure 6: 1,014 deformable alphabets   

6.2 Primitive Level Culling Result  

The primitive culling result is compared with 

the spatial hashing result (the sum of the 

collision pairs in each voxel: n(n-1)/2, where 

n is the number of primitives in a voxel).  

After the primitive level culling, there might 

be redundant pairs in the list, but still our 

method consistently reduces the number of 

collision pairs by the minimum of two orders 

of magnitude for all three benchmarks. It 

shows that the unnecessary collision checks 

are major bottleneck of spatial-hashing-based 

culling and our inner culling method plays a 

central role in improving the overall 

efficiency of algorithm. The numbers of 

potential colliding pairs are compared and 

shown in figure 7 in log scale. Benchmark 2 

and 3 results are almost identical in terms of 

the performance improvement rates. The hash 

table sizes are 2,239, 17,889 and 2,000 

relatively for benchmark 1, 2, and 3. Culling 

is very efficient at the first iteration because 

there is no collision. After the primitive level 

culling, the number of potential colliding 

pairs is significantly reduced. While collisions 

are increasing, the speed-up of the primitive 

culling is maintained roughly at two orders of 

magnitude. 

 
Figure 7: Primitive level culling speed-up 

result for benchmark 1.  

6.3 Element Level Culling Result  

When exact collision detection is performed 

for the potential colliding pairs of primitives 

without the element level culling, the number 

of element pairs for exact collision detection 
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is 15 times of the potential colliding pairs of 

the primitives after the primitive level culling. 

After performing 26-DOPs overlapping test, 

the number of element pairs for exact 

collision detection is calculated for all 

benchmarks and compared with the number of 

element pairs before culling for the 

performance analysis. The result is shown in 

log scale and demonstrates approximately one 

order of magnitude improvement of culling 

efficiency in figure 8.  

 
Figure 8: Element level culling speed-up 

result for benchmark 1.  

 

 

Figure 9: Average performance for the 

benchmarks on Dual-Core and Quad-Core.  

6.4 Parallel implementation result   

Each benchmark is tested on two different 

machines (dual-core: Pentium D CPU 3 GHz 

with 2 GB of RAM and quad-core: Xeon 

E5450 CPU 2GHz with 8 GB of RAM). The 

average computation time for benchmark 1 is 

0.04 second on the quad-core machine, two 

times faster than on the dual-core machine. 

The average performance shows the 

performance of parallelization. The detailed 

result is shown in figure 9.  The average 

computation time for benchmark 2 is 0.06 

second on the quad-core machine almost four 

times faster than on the dual-core machine. 

The average performance of benchmark 1 and 

2 is highly interactive (close to 30 frame per 

second). 

7. CONCLUSIONS  

We presented an efficient culling method that 

addresses the inefficiency of spatial hashing 

based culling by employing inner voxel 

culling. The inner culling includes 26-DOPs 

overlapping test, surface-normal test, and tests 

among the primitives in a voxel and among 

element pairs. Our experiments showed 

substantial improvements in overall culling 

performance of spatial hashing, typically by 

three orders of magnitude (two orders by the 

primitive level culling and one order by the 

element level culling). We implemented our 

method using OpenMP API for parallel 

computing on multi-core machines. In 

addition to the performance advantages, it is 

quite easy to implement and integrate the 

algorithms into existing dynamic simulation 

environments.  
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