
154 14th International Conference on Geometry and Graphics
August 5-9, 2010, Kyoto 	
©2010 International Society for Geometry and Graphics






 




             
            
             

  
            
            
               
         

             
            

             








     
     
    
      

    
      

     


    
      
     

     

   

       
    
     
     
     
    
    


    
     

     
     

      


2

memory size to hold the infinite three

dimensional space and the computational cost

of subdivision processing. But employing

spatial hashing with a regular grid,

subdivision processing became trivial and a

smaller size of memory can be used to hold

infinite cells.

Figure 1: The voxel indexes (1-6) for grid

cells are at the left top corner of each cell.

Gray dots and white dots are unnecessary

collision check pairs. The gray pair is well

separated, but they are mapped into voxel 4.

The white pair is mapped into voxel 5 due to

hash collision.

Despite the recent improvement on spatial

subdivision using spatial hashing, it is still

considered slower than a Voronoi based

method [15]. The inefficiency of spatial

hashing based method is caused by the

unnecessary collision checks. In Fig. 1, the

cases of unnecessary collision checks are

illustrated caused by hash collision and the

inefficiency of a grid set-up. Hash collisions

can be removed by using perfect hash

functions, but it may require pre-processing

and extra storage. The inefficiency of a grid

set-up is originated from the nature of spatial

hashing where objects are spread among

neighboring regularly divided voxels. We

resolved the inefficiency of spatial hashing by

adding an inner-voxel culling, which

substantially alleviates the effect of hash

collision. Specifically our empirical studies in

various setup consistently shows that our

method improves the performance of a spatial

hashing based culling by approximately three

orders of magnitude. Our method has no

limitations or assumptions of accuracy and

topology change for both inter- and

self-collisions. Furthermore, we utilized

parallelism to take benefits of available

multi-core architecture. Our method has been

implemented on dual-core and quad-core

using the open multi-processing (OpenMP)

application program interface (API) [33].

2. PREVIOUS WORK

Overall collision detection is surveyed by

Jimenez et al [4] and collision detection

among deformable objects is well

summarized by Teschner et al [5]. In this

section, we will highlight previous culling

methods in four categories (BVH-based,

GPU-based, Voronoi-based, and

spatial-hashing-based) and consider parallel

collision detection for deformable object

simulation.

2.1 BVH-Based Methods

There are many approaches based on BVH for

deformable object simulation such as aligned

axis bounding box (AABB) [17], [18], [19],

spheres [20], [21], oriented bounding box

(OBB) [22], and discrete oriented polytope

(DOP) [23]. The challenge of using BVH is

the cost of updating the hierarchy. Hierarchy

update [24] for limited-deformation models

such as meshless deformation and modal

analysis can be done very efficiently. But still

it is not efficient for self-collision. In order to

improve performance for self-collision an

additional culling process using curvature of

surface must be performed. It is quite

expensive and inefficient for objects like cloth

patches are folding itself with busy pattern.

2.2 GPU-Based Methods

Many researchers utilize advanced GPU

power for collision detection. Image-based

collision detection has been introduced for

3

convex objects [27] and extended for

non-convex objects [28]. Layered depth image

(LDI) has been proposed for objects with

closed surfaces [29]. These methods highly

depends the image resolution. The other trend

of GPU-based methods is utilizing hierarchy

[30], [31], [32]. All these methods did not

deal with the limitation of GPU such as the

size of memory and delay on read-back.

Govindaraju et al [33] achieved a fast culling

only for self-collision and recently Zhang and

Kim proposed AABB streaming [26] to

overcome the limited memory size and

minimize the read-back data, but they ignore

self-collision. Each method is fast, but cannot

perform inter-object collision and self

collision at the same time.

2.3 Voronoi-Based Methods

A fast culling method for deformable objects

has been achieved using discrete Voronoi

computation on GPUs [15]. This method has

no limitations on topology change, but there is

a minimum computation cost to set up GPU.

2.4 Spatial-Hashing-Based Methods

Spatial hashing has been successfully

employed in the spatial sub division method

for collision detection of rigid body

simulation and deformable object simulation

[1], [3], [6]. A spatial hashing for deformable

objects proposed by Teschner et al. [3] used a

limited size of data structure and a simple

spatial hash function for tetrahedron. They

computed only static collision contact triangle

and barycentric coordinates. Recently Eitz and

Lixu [16] introduced a hierarchical spatial

hashing using one dimensional array with

DJB2 hash function. Their method ran

consistently for different cell sizes with a

slight computational overhead, but the issue

of hash collision was not considered seriously.

A perfect spatial hashing was tried with

pre-computation and applied to collision

detection between objects by Lefebvre and

Hoppe [7]. Although each voxel will take one

spatial cell, a perfect hashing requires a large

number of voxels to hold all the cell and it has

to know the number of voxels a priori. For

deformable objects simulation the number of

required voxels changes at each step.

Moreover, the irregularity of the number of

triangles in voxels is inevitable in regular

voxel grids because the mesh has different

resolutions. All previous methods

decomposed the problem for static collision

detection without considering the unnecessary

collision checks caused by hash collisions or

by the result of inefficient grid set-up.

However, our experiment shows that the

unnecessary collision checks are a major

problem on spatial-hashing-based culling.

2.5 Parallel Collision Detection

Many different approaches have been

proposed for parallel collision detection.

Voxel-based parallel collision detection [2] is

implemented to determine colliding objects

on CHARM++, which is the object-based

parallel programming environment with a

dynamic load balancer. Their design needs

many communications between nodes because

they used distributed memory for voxels.

Especially for the objects overlapped in many

places, communication overhead impedes the

performance. While a linear scalability of

parallel processing can be achieved, the

performance of voxelization is slow because it

is based on culling without computing crucial

collision information such as collision points,

penetration depth and colliding time. They

have focused on collision detection only

between static objects. The performance and

the scalability can be lowered by applying

exact collision detection for close primitive

pairs in a highly dynamic environment.

Overlapping axis aligned bounding box

(OAABB) collision detection scheme [8] was

proposed in parallel processing using

OpenMP in a shared memory system.

OAABB can be efficient in inter-objects

collision detection, but it cannot work

efficiently to self-collision. Parallel collision

detection for cloth simulation [9] is proposed

4

on a distributed memory system creating local

task pools of AABB collision checking using

a hierarchy structure. Employing AABB in

hierarchy will not perform efficiently for

self-collision in parallel computing, since

objects are often close enough, and therefore

all recursive searches must reach to the leaf

nodes of the hierarchy.

We extended spatial-hashing-based method

for parallel computation to handle general

deformable objects. Our parallel scheme is

implemented independently from modeling or

numerical solvers, so that it can be coupled

with any other parallel simulation techniques.

We examined our method by conducting three

benchmarks with many collisions and

contacts.

3. OVERVIEW

The key idea of our method is working over

the input primitives directly regardless of the

number of objects, so the runtime complexity

of our method is O(n) where n is the number

of primitives (e.g., triangles or tetrahedral).

Our algorithm consists of four steps: updating

the 26 DOP of each triangle, spatial hashing

(mapping AABB of triangles into the fixed

number of voxels), culling of the primitives in

each voxel using 26-DOPs overlapping test

and surface normal test, and exact collision

detection with 26-DOPs overlapping tests for

the element pairs. Compared to a traditional

spatial-hashing-based method, the two culling

steps are added. No preprocessing or extra

data structure is needed for our method. The

whole process is illustrated in Fig. 2.

4. METHOD

4.1 26 DOP Update

The planes of 26-DOPs have following

normal vectors; <1,0,0>, <0,1,0>, <0,0,1>,

<1,1,0>, <1,-1,0>, <0,1,1>, <0,-1,1>, <1,0,1>,

<1,0,-1>, <1,1,1>, <1,-1,1>, <-1,1,1>,

<-1,-1,1> and their opposite vectors. Since

many applications require exact collision

detection for both continuous collision

detection and distance calculation, the

26-DOPs of each primitive cover the entire

trace of the primitive in a given period. The

threshold of distance calculation (e.g., the

thickness of repulsion force field) is added to

the total DOPs. Overall DOP update is quick

because there is no hierarchy to traverse. For

further optimization, the DOPs of static

objects in a given scene are not updated.

Figure 2: Four steps of culling based on

spatial hashing are shown. The proposed

two-level culling is at the third and the fourth

step. The element level culling and exact

collision detection are combined to save the

storage of potential collision pairs.

4.2 Spatial Hashing

In order to perform spatial hashing on objects,

the size of a cell and the number of voxels for

a given scene must be known before mapping

primitives to voxels. The size of a cell and the

number of voxels do play an important role in

performance optimization but there is no

definitive formula for optimal values due to

the diversity of geometric structures,

granularities of primitives, and topology

changes of deformable structures. As

Teschner et. al [3] suggested, a large hash

table size would contribute to the reduction of

hash collisions, but too large hash table size

could incur memory management issues to

actually decrease the overall performance.

5

The cell grid size should also strike a balance;

the number of primitives in a cell should be

reasonably controlled and a primitive should

not be disperses to many neighboring cells.

In our algorithm, the size of cell and the

number of voxels are computed in the

beginning of each simulation once and kept

constant during the simulation. The length of

the largest axis of 26-DOPs of triangles is

used for the cell size, and 20 percent of the

number of triangles is used for the number of

voxels. While these parameters can be further

tuned, it is rather a conservative arrangement

to warrant general applicability and objective

performance evaluation. When objects in the

scene do not move, the objects are voxelized

once and keep the information for each

voxelization.

4.3 Inner Culling

In conventional spatial hashing method, all

candidate primitive pairs are thrown into

exact collision if culling is failed on them.

Inner culling method goes one step further to

see if the primitive pairs do require exact

collision detection before performing exact

collision detection. Inner culling is performed

in two levels: the 26-DOPs of primitives with

surface normal test and for the 26-DOPs of

elements (point, and edge). 26-DOPs of each

primitive are updated and stored at the

beginning. 26-DOPs of elements are

calculated later for the element level culling.

Primitive Level Culling: As the first step in

inner culling procedure, 26-DOPs overlapping

tests for the primitives in each voxel are

performed. Previous approaches performed

direct collision checks for all primitives in a

voxel. Since 26-DOPs are tightly

approximating the primitive, the number of

possible collision pairs for the exact collision

detection has been reduced significantly. The

primitive pairs mapped into the same voxel

due to the hash collisions can be culled out

efficiently in this step. When building the list

of the potential collision pairs, there might be

duplicated pairs. However since the primitives

are well culled by spatial hashing, the number

of the duplicated potential collision pairs are

relatively small. If we want to completely

eliminate the redundancy, the algorithm

becomes very expensive while the expected

performance advantages would be relatively

small to justify the overhead.

Surface Normal Test: 26-DOPs overlapping

tests for the primitives are not efficient for

self-collision among thin objects like cloth

because neighboring triangles are always

overlapping. After performing 26-DOPs

primitives overlapping test, if the potential

collision pairs are in neighboring each other

(sharing at least one node), the dot product of

the surface normal vectors of two adjacent

primitives is calculated. If the dot product of

the surface normal vectors is greater than the

threshold (-0.9 or close to -1.0), the pair is

culled out from exact collision detection. The

threshold should be different for the thickness

of the repulsion force field. This may allow

self collisions by degenerate elements (see

figure 3) undetected, but this exceptional case

should be better handled and prevented by the

more accurate modeling.

Figure 3: The gray degenerate (very thin and

long) triangle is located between two normal

neighboring triangles.

Element Level Culling: For further culling

after the primitive level culling, we employed

the element level culling which is inspired by

the work of Hutter and Fuhrmann [14]. Before

performing 15 triangle/point and edge/edge

collision checks between two triangles or any

other primitive pairs, we calculated the

26-DOPs of points and edges. 26-DOPs

overlapping tests were performed between the

26-DOPs of primitive and the 26-DOPs of

6

element, and between the 26-DOPs of element

and the 26-DOPs of element. Hutter and

Fuhrmann [14] employed lower order

18-DOPs for the element culling, but we

found that the 26-DOPs are more efficient and

the overhead for calculating more degrees of

DOP is trivial.

4.4 Exact Collision Detection

The possible element pairs are checked to find

the exact collision time and the collision

location (barycentric coordinates) by the

coplanar condition method described by

Bridson et al [18]. The exact collision

detection has been performed with the

element level culling of the 26-DOPs

overlapping test to save the storage for the

possible collision pairs. If a collision is found,

the redundant check is performed over the

collision result (the list of triangle/point pair

and edge/edge pair) to remove the redundant

collision detection pairs. After this process,

the collision detection result is reported for

collision resolution (e.g., the list of

triangle/point and edge/edge pairs with

collision time and collision location:

barycentric coordinates)

5. PARALLELIZATION

The parallelization of our method has been

done in four separate steps because the shared

memory for voxels and collision results must

be synchronized for the next step after each

step is finished. In the 26-DOPs update step,

there is no shared data. Only one time

synchronization is required after each

processor performs update for the 26-DOPs of

primitives. In the spatial hashing step, the

memory of voxels is shared and maintained

by applying critical regions for tagging a cell

to its voxel and adding a primitive to the

voxel. In the primitive level culling step, the

memory of the potential collision pair list is

shared. In the element level culling and exact

collision detection, the list of the collision

pairs is shared and maintained by applying

critical regions on add-operations. After each

step, the shared memory is synchronized

among all the participating processors.

6. EXPERIMENTS

6.1 Benchmarks

Our method was applied to three different

simulation scenarios involving many

collisions and sustained contacts to analyze

the performance in various conditions.

Benchmark 1(14 tori simulation): each torus

consists of 800 triangles and 14 tori are

located randomly at the initial state and piled

up on the floor. The 14 tori are modeled by

mass-spring system similar to the model

described by Ko and Choi [35]. This example

has an increasing number of collisions (for

both inter/self collision) as the 14 tori pile up.

The total simulation step is 1,900 and the

snapshots of 14 tori simulation are shown in

figure 4.

Figure 4: 14 deformable Tori are piled up

Benchmark 2(Bunny and cloth simulation): a

cloth patch modeled by 100 by 100 particles

and 20K triangles is falling on the Stanford

bunny model with 60K triangles. The cloth

patch is also modeled with mass-spring

system similar to the 14 tori simulation. The

total simulation step is 4,500. The snapshots

of bunny and cloth simulation are shown in

figure 5. In this example, the bunny model is

once mapped to the voxels and the resulted

voxels are kept throughout simulation without

update.

7

Figure 5: Bunny and cloth simulation: at the

time step 1 (top left), 2050 (top right), 6000

(bottom).

Benchmark 3(1,014 alphabets simulation):

each letter is modeled with approximately 900

triangles and the total triangles in the given

scene are about one million. 1,014 letters are

falling to the floor with random initial

condition as shown in Figure 6. The letters are

modeled by meshless deformation using

FastLSM [34] and free-form deformation

(FFD) AABB is used as the primitives for

collision detection and resolution. The letters

have 11 lattices, and the total primitives are

11,000. Collision detection and resolution is

done by using FFD AABB which is distance

calculation for each FFD AABB.

Figure 6: 1,014 deformable alphabets

6.2 Primitive Level Culling Result

The primitive culling result is compared with

the spatial hashing result (the sum of the

collision pairs in each voxel: n(n-1)/2, where

n is the number of primitives in a voxel).

After the primitive level culling, there might

be redundant pairs in the list, but still our

method consistently reduces the number of

collision pairs by the minimum of two orders

of magnitude for all three benchmarks. It

shows that the unnecessary collision checks

are major bottleneck of spatial-hashing-based

culling and our inner culling method plays a

central role in improving the overall

efficiency of algorithm. The numbers of

potential colliding pairs are compared and

shown in figure 7 in log scale. Benchmark 2

and 3 results are almost identical in terms of

the performance improvement rates. The hash

table sizes are 2,239, 17,889 and 2,000

relatively for benchmark 1, 2, and 3. Culling

is very efficient at the first iteration because

there is no collision. After the primitive level

culling, the number of potential colliding

pairs is significantly reduced. While collisions

are increasing, the speed-up of the primitive

culling is maintained roughly at two orders of

magnitude.

Figure 7: Primitive level culling speed-up

result for benchmark 1.

6.3 Element Level Culling Result

When exact collision detection is performed

for the potential colliding pairs of primitives

without the element level culling, the number

of element pairs for exact collision detection

8

is 15 times of the potential colliding pairs of

the primitives after the primitive level culling.

After performing 26-DOPs overlapping test,

the number of element pairs for exact

collision detection is calculated for all

benchmarks and compared with the number of

element pairs before culling for the

performance analysis. The result is shown in

log scale and demonstrates approximately one

order of magnitude improvement of culling

efficiency in figure 8.

Figure 8: Element level culling speed-up

result for benchmark 1.

Figure 9: Average performance for the

benchmarks on Dual-Core and Quad-Core.

6.4 Parallel implementation result

Each benchmark is tested on two different

machines (dual-core: Pentium D CPU 3 GHz

with 2 GB of RAM and quad-core: Xeon

E5450 CPU 2GHz with 8 GB of RAM). The

average computation time for benchmark 1 is

0.04 second on the quad-core machine, two

times faster than on the dual-core machine.

The average performance shows the

performance of parallelization. The detailed

result is shown in figure 9. The average

computation time for benchmark 2 is 0.06

second on the quad-core machine almost four

times faster than on the dual-core machine.

The average performance of benchmark 1 and

2 is highly interactive (close to 30 frame per

second).

7. CONCLUSIONS

We presented an efficient culling method that

addresses the inefficiency of spatial hashing

based culling by employing inner voxel

culling. The inner culling includes 26-DOPs

overlapping test, surface-normal test, and tests

among the primitives in a voxel and among

element pairs. Our experiments showed

substantial improvements in overall culling

performance of spatial hashing, typically by

three orders of magnitude (two orders by the

primitive level culling and one order by the

element level culling). We implemented our

method using OpenMP API for parallel

computing on multi-core machines. In

addition to the performance advantages, it is

quite easy to implement and integrate the

algorithms into existing dynamic simulation

environments.

ACKNOWLEDGMENT

We would like to acknowledge the Stanford

Graphics Lab for providing the bunny model

used in the paper, and the source codes of

FastLSM by A. R. Rivers from his web page

for the 1,014 alphabets simulation.

REFERENCES

[1] Dingliana J. and O’Sullivan C. A

voxel-based approach to approximate

collision handling, J. Graphics Tools, vol. 10,

no. 4, pp. 33–48, 2005.

[2] Lawlor O. S. and Kalé L. V. A

voxel-based parallel collision detection

algorithm, Proc. the 16th Int’l conf. on

Supercomputing (ICS ’02), pp. 285–293,

2002.

[3] Teschner M., Heidelberger B., Mueller

M., Pomeranets D., and Gross M. Optimized

9

spatial hashing for collision detection of

deformable objects, Proc. VMV’03, pp. 47–54,

2003.

[4] Jimenez P., Thomas F., and Torras C. 3D

collision detection: A survey, Computers and

Graphics, vol. 25, no. 2, pp. 269–285, 2001.

[5] Teschner M., Kimmerle S., Zachmann G.,

Heidelberger B., Raghupathi L., Fuhrmann A.,

Cani M.-P., Faure F., Magnetat-Thalmann N.,

and Strasser W. Collision detection for

deformable objects, Computer Graphics

Forum, vol. 24(1), pp. 61–81, 2005.

[6] Ganovelli F., Dingliana J., and

O’Sullivan C. Buckettree: Improving collision

detection between deformable objects, Proc.

Summer Conf. Computer Graphics

(SCCG’00), 2000

[7] Lefebvre S. and Hoppe H. Perfect spatial

hashing, ACM Trans. Graphics, vol. 25, no. 3,

pp. 579–588, 2006.

[8] Figueiredo M. and Fernando T. An

efficient parallel collision detection algorithm

for virtual prototype environments, Proc. Int’l

Conf. on the Parallel and Distributed Systems

(ICPADS’04), p. 249, 2004.

[9] Thomaszewski B.and Blochinger W.

Parallel simulation of cloth on distributed

memory architectures, Proc. Eurographics

Symposium on Parallel Graphics and

Visualization, pp. 35–42, 2006.

[10] Cormen T. H., Leiserson C. E., and

Rivest R. L. Introduction to algorithms,

Cambridge, MIT Press, 2001.

[11] Munro J. I. and Celis P. Techniques for

collision resolution in hash tables with open

addressing, Proc. 1986 ACM Fall Joint

Computer Conf. (ACM ’86), pp. 601–610,

1986.

[12] Zhang D. and Yuen M. M. F. Collision

detection for clothed human animation, Proc.

the 8th Pacific Conf. Computer Graphics and

Applications (PG ’00), pp. 328–337, 2000.

[13] Hutter M. and Fuhrmann A. Optimized

continuous collision detection for deformable

triangle meshes, J. WSCG, pp. 25–32, 2007.

 [14] Sud A., Govindaraju N., Gayle R.,

Kabul I., and Manocha D. Fast proximity

computation among deformable models using

discrete Voronoi diagrams, ACM Trans.

Graphics, vol. 25, no. 3, pp. 1144–1153,

2006.

[15] Gregory A. D., Lin M. C., Gottschalk S.,

and Taylor R. A framework for fast and

accurate collision detection for haptic

interaction, in IEEE Virtual Reality Conf., pp.

38–45, 1999.

 [16] Eitz M. and Lixu G. Hierarchical

spatial hashing for real-time collision

detection”, Proc. the IEEE Int’l Conf. on

Shape Modeling and Applications (SMI’07).

pp. 61–70, 2007.

[17] Bergen G. van den Efficient collision

detection of complex deformable models using

AABB trees, Graphics Tools, vol. 2, no. 4, pp.

1-13, 1997.

[18] Bridson R., Fredkiw R., and Anderson J.

Robust treatment for collisions, contact and

friction for cloth animation, Proc. ACM

SIGGRAPH, pp. 594-603, 2002.

[19] Baraff D., Witkin A., and Kass M.

Untangling cloth, ACM Trans. Graphics, vol.

22, no. 3, pp. 862-870, 2003.

[20] Palmer I. J. and Grimsdale R. L. Collision

detection for animation using sphere-trees,

Computer Graphics Forum, vol. 14, no. 2, pp.

105-116, 1995.

[21] Hubbard P. M. Collision detection for

interactive graphics applications, IEEE Trans.

Visualization and Computer Graphics, vol. 1,

no. 3, pp. 218-230, May/June 1995.

[22] Gottschalk S., Lin M. C., and Manocha

D. OBB-Tree: A hierarchical structure for

rapid interference detection, Proc. ACM

SIGGRAPH, pp. 171-180, 1996.

[23] Klosowski J. T., Held M., Mitchell J. S.

B., Sowizral H., and Zikan K. Efficient

collision detection using bounding volume

hierarchies of k-DOPs, IEEE Trans.

Visualization and Computer Graphics, vol. 4,

no. 1, pp. 21-36, Jan./Feb. 1998.

[24] James D. L. and Pai D. K. BD-Tree:

Output-sensitive collision detection for

reduced deformable models, ACM Trans.

Graphics, vol. 23, no. 3, 2004.

10

[25] Govindaraju N. K., Knott D., Jain N.,

Kabul I., Tamstorf R., Gayle R., Lin M. C.,

and Manocha D. Interactive collision

detection between deformable models using

chromatic decomposition, ACM Trans.

Graphics, vol. 24, no. 3, pp. 991-999, 2005.

[26] Zhang X., Kim Y. J. Interactive collision

detection for deformable models using

streaming AABBs, IEEE Trans. Visualization

and Computer Graphics, vol. 13, no. 2, pp.

318-329, Mar/Apr, 2007

[27] Shinya M. and Forgue M. C. Interference

detection through rasterization, Visualization

and Computer Animation, vol. 2, no. 4, pp.

132-134, 1991.

[28] Myszkowski K., Okunev O. G., and

Kunii T. L. Fast collision detection between

complex solids using rasterizing graphics

hardware, Visual Computer, vol. 11, no. 9, pp.

497-512, 1995.

[29] Chen W., Wan H., Zhang H., Bao H., and

Peng Q. Interactive collision detection for

complex and deformable models using

programmable graphics hardware, Proc.

ACM Symp. Virtual Reality Software and

Technology (VRST), pp. 10-15, 2004.

[30] Gress A. and Zachmann G.

Object-space interference detection on

programmable graphics hardware, Proc.

SIAM Conf. Geometric Design and

Computing, pp. 311-328, 2003.

[31] Govindaraju N. K., Redon S., Lin M. C.,

and Manocha D. CULLIDE: Interactive

collision detection between complex models in

large environments using graphics hardware,

Proc. Graphics Hardware Conf., pp. 25-32,

2003.

[32] Govindaraju N. K., Redonn S., Lin M. C.,

and Manocha D. Quick-CULLIDE: Efficient

inter- and intra-object collision culling using

graphics hardware, Proc. IEEE Virtual

Reality Conf., pp. 59-66, 319, 2005.

[33] OpenMP, http://openmp.org/wp/

[34] Rivers A. R. and James D. L.

FastLSM: fast lattice shape matching for

robust real-time deformation, Proc. ACM

SIGGRAPH, no. 82, 2007.

[35] Choi K. and Ko H. Stable but responsive

cloth, Proc. ACM SIGGRAPH, pp 604-611,

2002.

[36] Jung S. and Choi M. Balanced spatial

subdivision method for continuous collision

detection Proc. 13th Int’l Conf. Geometry and

Graphics (ICGG ’08), 2008.

ABOUT THE AUTHORS

1. Sunhwa JUNG is a doctoral student in

computer science and information systems

at the University of Colorado Denver.

Jung received an MS in computer science

from the University of Colorado Denver in

2005. His research interests are in

physically based simulation and collision

detection and resolution. Contact him at

sunhwa.jung@mail.cudenver.edu.

2. Min-Hyung CHOI is the director of the

Computer Graphics and Virtual

Environments Laboratory, and an

associate professor of computer science

and engineering at the University of

Colorado Denver. Choi received his MS

and PhD from the University of Iowa. His

research interests are in computer graphics,

scientific visualization, and human

computer interaction with an emphasis on

physically based modeling and simulation

for medical and bioinformatics

applications. Contact him at

min.choi@cudenver.edu.

