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Abstract. This paper presents an efficient approach to represent the animation of the deformable objects
using adaptive spatial resolution. We introduce the multi-resolutional mass-spring model that is locally
refined using surface wavel et to reduce the computational effort while ensuring a same global behaviour for
the deformable object. In the animation of deformable objects, the part of the object that gets the external
force is refined in higher level of detail and the mass values of mass nodes in the local part are changed in
order to preserve the total mass of the object. Triangular mesh surface can effectively be subdivided or
simplified using local synthesis filters and analysis filters. The local synthesis and analysis filters are
constructed in on-line processing when the large magnitude of object deformation is detected. We exploit
“winged-edge’ data structure in order to detect the neighbouring faces and edges in constant time. The
proposed method which is independent of the regularity of the initial mesh reduces computational cost in
effect while ensuring behaviour of the object in the refined model.

1. Introduction

The realtime interaction with deformable objects plays a crucid role in many interactive virtua
redity gpplications. The gpplications related to surgical smulation particularly demand the red-
time animation of deformable object according to a user’s interaction. Among the severd
methodologies for physcaly-based modeing, mass-soring models are widely gpplied n the
virtua redity agpplication because they ae effective in computationd cost and smple to
implement. However, even the mass- goring modds including many mass nodes and springs for
representing more complex deformation makesit difficult to Smulate the deformation in red time.
In the case of the large mass spring modds, the nodes largely affected by the externd force are
usudly the subset of totd nodes and the rest of nodes mosly remain 4ill or oscillate invighly.
However, computation for deformation covers the entire nodes composed the object and it
makes the real time smulaion difficult. Therefore, combining locdly refinement techniques with
physcaly-based modeling have been applied in order to reduce large amount of computation
while ensuring the globa behaviour of detailed modd. In this paper, we propose the adaptive
mass- spring model which is localy animated a different levels of details usng surface wavdet
which is effective to subdivision and smplification of surface mesh.

The remaining sections of this paper are as follows. In section 2, we briefly review the researches
on the deformable modeing and adaptive method in physicaly -based animation. We discuss a
conventiond  mass spring models and surface subdivison nethod using surface wavelet in
section 3 and 4. We present our adaptive refinement scheme combined with mass-spring model
in chapter 5. In chapter 6, we discuss the result of implementation and we finaly suggest the
conclusion and future works in chapter 7.



2. Related Work

Physical accuracy and real-time performance are trade-off in animating deformable objects. In
the case of mass-gpring system, the equations of motion are integrated independently for each
particle, which make caculations fast. However, physical accuracy of mass-garing sysem is
lower than that of deformable models usng Finite Element Methods (FEM). Conventiond FEM
uses exact differentia operators which require solving alarge sparse sysem. As aresult, it isless
competible with red-time gpplications. Explicit finite dement method uses Smilar animation way
to mass- goring case, in which each node of the FEM mesh dynamically integrates its motion from
the positions of adjacent nodes. This method gives more accurate results than nass spring
system. However, computing deformation a a fine discretization level requires a fine sampling
that prevents redl-time performances. Some previous work uses LOD (Levd Of Detail) to
locdly refine a deformable modd in regions of interest. Hutchinson et d. represent a piece of
draped cloth by adaptive mass-goring model which refines the regions of high curvature [1].
O Brien smulates the fracture of glass by refining a tetrahedral mesh dong fracture lines[2]. Wu
et a. propose a scheme for mesh adaptation based on an extension of the progressive mesh
concept to produce a diagona mass matrix that alows red time computation [3]. Debunne et dl.
propose a method of physicaly-based modeling that combines a linear finite volume-based
mechanica modd with a non-hierarchica refinement technique based on VVoronoi concept [4].
The relationships between disparate resolution meshes are maintained using ghost nodes that
transmit the mechanica behaviour of a mesh section a one resolution to adjacent mesh sections
of different resolutions. Kawal builds “ hierarchica mass-gpring models’ in order to manipulate
the elagtic object using coarse-to-fine representation of mass spring models based on the degree
of deformation [5].

The most of previous works assume that the initial fine mesh is of good quality. For example, Wu
et d. assume that angles within each triangle should be at least 20° and the vaence of each vertex
should be less than 10. In this paper, we propose an adaptive mass-spring method based on a
surface wavelet concept, which is not independent of the regularity of the initid mesh and can
effectively subdivide or amplify the surface usng andysisfilters or synthesis filters. The triangular
mesh in the area that has alarge magnitude of object deformationis localy refined by multiplying
by locd synthessfilters.

3. A conventional Mass-Spring Mode

The demands for red-time performance in modeling and smulaion of deformable objects have
lead many researchers to concentrate on ample eastic modes. Mass spring modd is a smple
discrete approximation of a continuous mode assuming that the mass is concentrated on noda
points and the nodes are connected with neighbor nodes with mass-less springs. Mass pring
modd iswel sudied and widdy used for many smulaions and animations. It is a smple physica
model, easy to program, and it demongtrates reasonably fast smulation speed. Despite the
drawbacks such as problems in finding proper spring coefficients and deding with
inconpressibility, mass-soring modd is cdled for when the importance of numerica performance
and interactivity outweighs physica accuracy and generd gpplicability. Mass-Spring modd is well
suited for the interactive surgery smulaion and medica animation where redl-time feedback and
prompt responses are required. Simulating human organ using a mass-pring system consists of a
number of mass points and springs that connect the noda points to propagate the energy. The
falowing figure illugtrates the liver modd with surface oriented mass-gpring sysems which consist
of mass points (green circles) and springs (yellow line).



Figure 1.1. Liver model with mass-spring model.
The governing Lagrange’ s equaion for mass-spring model is

mx +g;% +kx = f +g
where X, X, X,

. are the podition, the velocity and the acceleration respectively. m ,g,, k; are the
nodal mass, the damping coefficient and stiffness coefficient a node i, and g, istota force on
node i due to oring connecting node i to neighboring nodes. f; isthe externd force & node i. We
use explicit Euler method to numericaly integrate the ODE (Ordinary Differentid Equetion).
When the initid vaue of x is X, = X(t,), the estimate vaue of x at alater time t, +h
isX(t, + h) , where hisaparameter for step-size.

X(to +h) =X, +hx(t,)

Using the Newton' slaw f = ma, accdleration and velocity of mass points can be written as a
pair of coupled firgt-order ODE:

v=xX="f/m
X=v
To caculate spring forcesg, , the pring length & resting steger is pre-computed from the initial

positions of nodes that define an object’ s origina shape. The spring forcesg, and g, between a
pair of masspoints 1 and 2 at pOSItIOﬂ x, and x,, with velocity Vland v, are

aED\/>Dx
R S

g2:_g1

91:'

where k, and k, are spring constant and damping constant respectively. Dx = x, - x, isthe
difference between the two points positions, and Dv = v, - v, is the difference between the two

points velocities. Given the externa forces, the new position of every mass points is computed by
numerically solving the ODE.

4. Multi-resolutional analysisusing Surface Wavelets

The darting point for multi-resolutional andlyss is a nested set of linear function spaces
VOi vi...] V" withthe resolution of function in ! increasing with j. The basis function for the
space V! are cdled scding functions. The next sep in multi-resolution andysis is to define the
wavelet spaces, denoted by W. Each wavelet space W to be the complement of V in Vi*L,
Thus, any function in Vi*! can be written as the sum of a unique function in V and a unique



function in WA. The functions we choose as a basis for Wi are caled wavelets. Matrix notation is
used to perform a wavelet transform [6][7]. We consider a function in some approximation
space V! and assume that we have the coefficients of this function in terms of some scdli
function bass. We write these coefficients as a column matrix of vaues ¢! = (ég ....... c (j)_ng.
The coefficients ¢! be thought of asthe x-, y-,z coordinates of anode pointsin A*. To create a
low-resolution version ¢/ *of ¢! with a smaler number of coefficients v(j-1) valuesof ¢!t is
to use some form of lineer filtering and down sampling on the v(j) entriesof ¢'. This process can
be expressed as a matrix equation

¢ =Alc <eq. 4.1>

where Al isacondant v(j - 1)” v(j) matrix.

Since ¢!"! contains fewer entries t c’, It is cear that some amount of detall is logt in this
filtering process. If A’is appropriately chosen, it is possible to capture the lost detail as another
column matrix d ", computed by

dit=B'c <eq. 4.2>

where B! isacongtant w(j- 1)’ v(é? malrix related to A’. The pair of matrices A’ and B' are
cdled andysis filters. The process of solitting the coefficients ¢! into a low-resolution version
c/"tand detail d’'-* iscdled andyss of decompastion. If A’ and B’ are chosen appropriately,
then the origind coefficients ¢! can be recovered from ¢i-* and di-* by using the matrices P!
and Q':

cl = PiCJ-1+Qidi-1 <eg. 4.3>

For triangular subdivision, the splitting step bresks each face of j - 1 leve into four sub-faces by
introducing edge midpoints to create a new mesh. The averaging step then perturbs the resulting
collection of vertices to create a mesh for j level according to the wavelet coefficients. Figure
4.1 depicts the averaging and perturbation of triangular mesh.
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Figure4.1 Triangular subdivision :
(a)Initial face of j-1 level (b) the new mesh created by the splitting step
(c) themesh of j level created by the averaging step.

5. Adaptive Refinement

The main idea of proposed method is based on the dynamic combination of different detall levels
of mass spring models according to the location of manipulator node in order to reduce the mass
nodes and springs for computation and to preserve the overal behaviour of object. The
neighbouring area of manipulator node with the externd force is locally refined by adding extra
masses and splitting the springs. And the masses of existed nodes in coarse level are modified in
order to preserve the overal mass of object.
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Figure5.1 the new mesh after locally refinement

Bluetriangle: the forced node, Red circle: theinserted nodesin refined level,
Cyan circle: theinitial nodesin coarse level

Figure 5.1 depicts how to bcdly refine the neighbouring area of manipulator node. The blue
triangle represents the manipulator node and the cyan circles represent the existed mass nodes in
coarse detail level. And the red circles express the inserted extra nodes and the red edges are the
inserted springs. The springs between two cyan cirdes the existed mass nodes are divided into
two short springs by the extra nodes. The positions and the number of the extra nodes are
decided by the subdivison surface agorithm. We apply a surface lazy-waveet as a subdivision
method. As aresult of subdivison using lazy waveet, each face at the distance of one spring from
the manipulator node is subdivided into four sub-faces and each face at the distance of two
springs which includes the extra nodes is subdivided into two sub-faces like Figure 5.1. In the
case of that the valence of the manipulator node is six, twelve extra nodes are added in the area at
the distance of one spring from manipulator node. That is, seven mass nodes are broken into
nineteen mass sub- nodes. Each mass of nineteen nodes is computed by

valence

(A MASS,,, +1)

MASS,,, =——=
" valence+ NumNewNodes

<eg. 5.1>

where, vaence means the vaence of manipulator node. i is an index for existed nodes in the
neighbouring area and ] means an index for nineteen nodes. NumNewNodesis the number of the
extra nodes. We condruct “winged-edge’ data structure for mass-gpring models in order to
effectively detect the neighbouring faces and edges. Winged- edge data structur e is the boundary
representation method using edge’ s ordered relation. The following information are saved for
each edge in the edge table.

Start and end vertices of this edge

Its left and right faces

The predecessor and successor of this edge when traversingits left face

The predecessor and successor of this edge when traversing its right face

Clockwise ordering is used for traverse. Figure 5.2 shows the information for the entry of edge a
Thefour edgeb, ¢, d and e are the wings of edge aand edge ais “winged’.
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~

Figure 5.2 Winged-edge Data Structure and Edge table




The winged-edge data structure requires two more tables, the vertex table and the face table.
These two are very smple. The vertex table has one entry for each vertex which contains an edge
that is incident to this vertex. The face table has one entry for each face which contains an edge
that is one of this face’ s boundary edges. Using winged-edge data structure, we can easily
answer the question: which vertices, edges, faces are adjacent to each face, edge, or vertex. The
wingedh edge data Structure can answer these queries in constant time [8].

We congtruct the synthesis and analysis matrices for loca lazy waveets in order to decide the
extra mass nodes when the manipulator node is sdected by user interaction. We can easlly find
the neighboring node and neighboring edges of the manipulator node using winged-edge data
dructure. The synthesis matrix for decideing the extra nodes which bresk the edges in area of
onterest into two subedges is as follows.

él u é0u
Ray = €50 Qe =
’ er u SI H

where, P, ismatrix to decide the midpoints of edges, | means the indenty matrix.

In order to construct P, matrix, we search the edges in the distance of one edge from the
manipulator node by searching the edge table and write %zin the cell of matrix for start and end
vertex of related edge. A sample for P, and Q4 is asfallows.
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Using synthes's matrices and V,,, column matrix, we can calculate the new set of mass nodes as
follows

Voew = RaaYola + Qs d' <eq. 4.3>
where VI isnew massnodesand d!** is column matrix consisted of detail coefficients. Detail
coefficients are defined in the pre-processing step for constructing coarse model and refined
modd.

6. Results

In order to evaute the effectiveness of animation, we implemented the proposed adaptive and
non-adaptive mass-goring method in Pentium 111 PC with 1GHz CPU and 1Gbyte RAM. We
compared the execution time and the behaviour of coarse, refined and locally refined modds
basad on the displacement variance of nodes which have the large magnitude of deformation.
Figure 6.1 shows the origind mass spring modd in coarse and refined detall levels. Figure 6.2
shows the locdly refined mesh of origind mass-spring mode by proposed method. Table 6.1
summarizes the number of sorings and the execution time  until 1000 smulation time steps for
each modd.



(a) coarse model (b) refined model
Figure 6.1 Origina mass-spring model

(8 manipulator node ID: 100 (b) manipulator nodelD : 104
Figure 6.2 Locally-refined model

No. of nodes No.of springs | Execution time (sec.) for
1000 time steps
Conventional | Refined model 550 1644 18.096
method Coarse model 139 111 6.249
Proposed Locally Refined
method Model 151 aar 36

Table 6.1. Computation time comparison with conventional Mass-Spring method

In order to compare the overall behaviour of object, we computed the accumulated displacement
of nodes in the refined area and displacement variance of the manipulator node according to
amulation time. Figure 6.3 shows the accumulated displacement values and Figure 6.4 depicts the
behaviour of the manipulator node.

Comparison of Accumulated displacement
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Figure 6.3 Comparison of accumulated displacement of sampling nodes
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Figure 6.4 Comparison of variance of y-coordinates for manipul ator node

The computation time is reduced about 60 percent of conventiond refined mass spring modes
and overdl behaviour of refined modd is preserved. Figure 6.5 depicts the geometrica
deformation when we pull the manipulator node (green circle).

Figure 6.5 Geometrical deformation by locally refined method

7. Conclusion

We have developed an adaptive mass spring model that can be animated at different levels of
detall in order to reduce the computationa effort while ensuring a same globa behaviour for the



refined deformable modd. We apply the surface wavelet method for the local subdivision surface.
The locd synthess and andysis filters are dynamicaly congtructed for wavelet transformation
based on the location of the manipulator node. The winged-edge data structure enables us to
detect the adjacent nodes, faces and springs in the congtant time, which is necessary to construct
synthesis and anaysis filters. We can define the extra mass nodes by multiplying the existed mass
nodes by synthess filters. As the results of comparison with conventional and adaptive mass-
spring mode, the behaviour pattern of the locally refine mode using the adaptive method is very
gmilar to fully refined mass soring mode, while the computationd time is reduced about 60
percent. The performance gain is more substantial as the number of nodes and springs increase.
Dynamicdly determining the optima area for loca refinement based on the megnitude of
deformation of each node remains as a future work. Moreover, we Il apply our adaptive
approach to FEM and extend surface meshes to tetrahedra meshes in order to improve the
reglism of deformation.
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