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Abstract. This paper presents an efficient approach to represent the animation of the deformable objects 
using adaptive spatial resolution. We introduce the multi-resolutional mass-spring model that is locally 
refined using surface wavelet to reduce the computational effort while ensuring a same global behaviour for 
the deformable object. In the animation of deformable objects, the part of the object that gets the external 
force is refined in higher level of detail and the mass values of mass nodes in the local part are changed in 
order to preserve the total mass of the object. Triangular mesh surface can effectively be subdivided or 
simplified using local synthesis filters and analysis filters. The local synthesis and analysis filters are 
constructed in on-line processing when the large magnitude of object deformation is  detected. We exploit 
“winged-edge” data structure in order to detect the neighbouring faces and edges in constant time. The 
proposed method which is independent of the regularity of the initial mesh reduces computational cost in 
effect while ensuring behaviour of the object in the refined model.  
 
 
 
1. Introduction 
 
The real-time interaction with deformable objects plays a crucial role in many interactive virtual 
reality applications. The applications related to surgical simulation particularly demand the real-
time animation of deformable object according to a user’s interaction. Among the several 
methodologies for physically-based modeling, mass-spring models are widely applied in the 
virtual reality application because they are effective in computational cost and simple to 
implement. However, even the mass-spring models including many mass nodes and springs for 
representing more complex deformation makes it difficult to simulate the deformation in real time. 
In the case of the large mass-spring models, the nodes largely affected by the external force are 
usually the subset of total nodes and the rest of nodes mostly remain still or oscillate invisibly. 
However, computation for deformation covers the entire nodes composed the object and it 
makes the real-time simulation difficult. Therefore, combining locally refinement techniques with 
physically-based modeling have been applied in order to reduce large amount of computation 
while ensuring the global behaviour of detailed model.  In this paper, we propose the adaptive 
mass-spring model which is locally animated at different levels of details using surface wavelet 
which is effective to subdivision and simplification of surface mesh. 
The remaining sections of this paper are as follows. In section 2, we briefly review the researches 
on the deformable modeling and adaptive method in physically-based animation. We discuss a 
conventional  mass-spring models and surface subdivision method using surface wavelet in 
section 3 and 4.  We present our adaptive refinement scheme combined with mass-spring model 
in chapter 5. In chapter 6,  we discuss the result of implementation and we finally suggest the 
conclusion and future works in chapter 7. 



 
2. Related Work 
 
Physical accuracy and real-time performance are trade-off in animating deformable objects. In 
the case of mass-spring system, the equations of motion are integrated independently for each 
particle, which make calculations fast. However, physical accuracy of mass-spring system is 
lower than that of deformable models using Finite Element Methods (FEM). Conventional FEM 
uses exact differential operators which require solving a large sparse system. As a result, it is less 
compatible with real-time applications. Explicit finite element method uses similar animation way 
to mass-spring case, in which each node of the FEM mesh dynamically integrates its motion from 
the positions of adjacent nodes. This method gives more accurate results than mass-spring 
system. However, computing deformation at a fine discretization level requires a fine sampling 
that prevents real-time performances. Some previous work uses LOD (Level Of Detail) to 
locally refine a deformable model in regions of interest. Hutchinson et al. represent a piece of 
draped cloth by adaptive mass-spring model which refines the regions of high curvature [1]. 
O’Brien simulates the fracture of glass by refining a tetrahedral mesh along fracture lines [2]. Wu 
et al. propose a scheme for mesh adaptation based on an extension of the progressive mesh 
concept to produce a diagonal mass matrix that allows real time computation [3]. Debunne et al. 
propose a method of physically-based modeling that combines a linear finite volume-based 
mechanical model with a non-hierarchical refinement technique based on Voronoi concept [4]. 
The relationships between disparate resolution meshes are maintained using ghost nodes that 
transmit the mechanical behaviour of a mesh section at one resolution to adjacent mesh sections 
of different resolutions. Kawai builds “hierarchical mass-spring models” in order to manipulate 
the elastic object using coarse-to-fine representation of mass-spring models based on the degree 
of deformation [5].  
The most of previous works assume that the initial fine mesh is of good quality. For example, Wu 
et al. assume that angles within each triangle should be at least 20° and the valence of each vertex 
should be less than 10.  In this paper, we propose an adaptive mass-spring method based on a 
surface wavelet concept, which is not independent of the regularity of the initial mesh and can 
effectively subdivide or simplify the surface using analysis filters or synthesis filters. The triangular 
mesh in the area that has a large magnitude of object deformation is locally refined by multiplying 
by local synthesis filters.  
 
 
3.  A conventional Mass-Spring Model 

 
The demands for real-time performance in modeling and simulation of deformable objects have 
lead many researchers to concentrate on simple elastic models. Mass-spring model is a simple 
discrete approximation of a continuous model assuming that the mass is concentrated on nodal 
points and the nodes are connected with neighbor nodes with mass-less springs. Mass-spring 
model is well studied and widely used for many simulations and animations. It is a simple physical 
model, easy to program, and it demonstrates reasonably fast simulation speed. Despite the 
drawbacks such as problems in finding proper spring coefficients and dealing with 
incompressibility, mass-spring model is called for when the importance of numerical performance 
and interactivity outweighs physical accuracy and general applicability. Mass-Spring model is well 
suited for the interactive surgery simulation and medical animation where real-time feedback and 
prompt responses are required. Simulating human organ using a mass-spring system consists of a 
number of mass points and springs that connect the nodal points to propagate the energy. The 
following figure illustrates the liver model with surface oriented mass-spring systems which consist 
of mass points (green circles) and springs (yellow line). 
 



 
Figure 1.1. Liver model with mass-spring model. 

 
The governing Lagrange’s equation for mass-spring model is  
 

iiiiiiii gfxkxxm +=++ &&& γ  

where ix , ix& , ix&&  are the position, the velocity and the acceleration respectively. im , iγ , ik are the 
nodal mass, the damping coefficient and stiffness coefficient at node i , and ig  is total force on 
node i due to spring connecting node i to neighboring nodes. if  is the external force at node i . We 
use explicit Euler method to numerically integrate the ODE (Ordinary Differential Equation). 
When the initial value of x  is )( 00 txx = , the estimate value of x  at a later time ht +0  
is )( 0 htx + , where h is a parameter for step-size.    
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Using the Newton’s law maf = , acceleration and velocity of mass points can be written as a 
pair of coupled first-order ODE: 
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To calculate spring forces ig , the spring length at resting stager is pre-computed from the initial 
positions of nodes that define an object’s original shape. The spring forces 1g and 2g  between a 
pair of mass points 1 and 2 at position 1x and 2x with velocity 1v and 2v are 
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where sk and dk are spring constant and damping constant respectively. 21 xxx −=∆  is the 

difference between the two points’ positions, and 21 vvv −=∆  is the difference between the two 
points’ velocities. Given the external forces, the new position of every mass points is computed by 
numerically solving the ODE. 
 
 
4. Multi-resolutional analysis using Surface Wavelets 
 
The starting point for multi-resolutional analysis is a nested set of linear function spaces 

nVVV ⊂⊂ L10  with the resolution of function in Vj increasing with j. The basis function for the 
space Vj are called scaling functions. The next step in multi-resolution analysis is to define the 
wavelet spaces, denoted by Wj. Each wavelet space Wj to be the complement of Vj in Vj+1. 
Thus, any function in Vj+1 can be written as the sum of a unique function in Vj and a unique 



function in Wj. The functions we choose as a basis for W j are called wavelets. Matrix notation is 
used to perform a wavelet transform [6][7]. We consider a function in some approximation 
space Vj and assume that we have the coefficients of this function in terms of some scaling 
function basis. We write these coefficients as a column matrix of values [ ]Tj

jv
jj ccc 1)(0 ....... −= . 

The coefficients j
ic be thought of as the x-, y-,z- coordinates of a node points in 3ℜ . To create a 

low-resolution version 1−jc of  jc   with a smaller number of coefficients v(j-1) values of  1−jc  is 
to use some form of linear filtering and down-sampling on the v(j) entries of jc . This process can 
be expressed as a matrix equation 
 
                  jjcAc j =−1                  <eq. 4.1> 
 
where jA is a constant )()1( jvjv ×−  matrix. 
Since 1−jc  contains fewer entries than jc , It is clear that some amount of detail is lost in this 
filtering process. If jA is appropriately chosen, it is possible to capture the lost detail as another 
column matrix 1−jd , computed by 
 
        jjcBd j =−1       <eq. 4.2> 
 
where jB is a constant )()1( jvjw ×− matrix related to jA . The pair of matrices jA and jB are 
called analysis filters. The process of splitting the coefficients jc into a low-resolution version 

1−jc and detail 1−jd  is called analysis of decomposition. If jA  and jB are chosen appropriately, 
then the original coefficients jc  can be recovered from 1−jc  and 1−jd  by using the matrices jP  
and jQ :  
 
        1−= jjcPc j + 1−jjdQ    <eq. 4.3> 
 
For triangular subdivision, the splitting step breaks each face of 1−j  level into four sub-faces by 
introducing edge midpoints to create a new mesh. The averaging step then perturbs the resulting 
collection of vertices to create a mesh for j  level according to the wavelet coefficients. Figure 
4.1 depicts the averaging and perturbation of triangular mesh.  
 

                                               (a)                                     (b)                                     (c) 
Figure 4.1  Triangular subdivision : 

(a) Initial face of j-1 level  (b) the new mesh created by the splitting step 
(c)  the mesh of j level created by the averaging step. 

 
 
5. Adaptive Refinement 

 
The main idea of proposed method is based on the dynamic combination of different detail levels 
of mass-spring models according to the location of manipulator node in order to reduce the mass 
nodes and springs for computation and to preserve the overall behaviour of object.  The 
neighbouring area of manipulator node with the external force is locally refined by adding extra 
masses and splitting the springs. And the masses of existed nodes in coarse level are modified in 
order to preserve the overall mass of object.   
 
 
 
 



 

Figure 5.1  the new mesh after locally refinement 
Blue triangle : the forced node, Red circle : the inserted nodes in refined level, 

Cyan circle : the initial nodes in coarse level 
 

Figure 5.1 depicts how to locally refine the neighbouring area of manipulator node. The blue 
triangle represents the manipulator node and the cyan circles represent the existed mass nodes in 
coarse detail level. And the red circles express the inserted extra nodes and the red edges are the 
inserted springs. The springs between two cyan circles-the existed mass nodes are divided into 
two short springs by the extra nodes. The positions and the number of the extra nodes are 
decided by the subdivision surface algorithm. We apply a surface lazy-wavelet as a subdivision 
method. As a result of subdivision using lazy wavelet, each face at the distance of one spring from 
the manipulator node is subdivided into four sub-faces and each face at the distance of two 
springs which includes the extra nodes is subdivided into two sub-faces like Figure 5.1. In the 
case of that the valence of the manipulator node is six, twelve extra nodes are added in the area at 
the distance of one spring from manipulator node. That is, seven mass nodes are broken into 
nineteen mass sub-nodes. Each mass of nineteen nodes is computed by 
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where, valence means  the valence of manipulator node. i  is an index for existed nodes in the 
neighbouring area and j means an index for nineteen nodes. sNumNewNode is the number of the 
extra nodes. We construct “winged-edge” data structure for mass-spring models in order to 
effectively detect the neighbouring faces and edges. Winged-edge data structure is the boundary 
representation method using edge’s ordered relation. The following information are saved for 
each edge in the edge table. 

• Start and end vertices of this edge 
• Its left and right faces 
• The predecessor and successor of this edge when traversingits left face 
• The predecessor and successor of this edge when traversing its right face 

 
Clockwise ordering is used for traverse. Figure 5.2 shows the information for the entry of edge a. 
The four edge b, c, d and e are the wings of edge a and edge a is “winged”. 
 

 
 

 
Figure 5.2 Winged-edge Data Structure and Edge table 

Edge Vertices Faces Left 
Traverse 

Right 
Traverse 

Name Start End Left  Right Pred. Succ. Pred. Succ. 

a X Y 1 2 b d e c 



 
The winged-edge data structure requires two more tables, the vertex table and the face table. 
These two are very simple. The vertex table has one entry for each vertex which contains an edge 
that is incident to this vertex.  The face table has one entry for each face which contains an edge 
that is one of this face’s boundary edges.  Using winged-edge data structure, we can easily 
answer the question: which vertices, edges, faces are adjacent to each face, edge, or vertex.  The 
winged-edge data structure can answer these queries in constant time [8].  
We construct the synthesis and analysis matrices for local lazy wavelets in order to decide the 
extra mass nodes when the manipulator node is selected by user interaction. We can easily find 
the neighboring node and neighboring edges of the manipulator node using winged-edge data 
structure. The synthesis matrix for decideing the extra nodes which break the edges in area of 
onterest into two subedges is as follows. 
 
 
 
where, Pm  is matrix to decide the midpoints of edges, I means the indenty matrix.  
In order to construct Pm  matrix, we search the edges in the distance of one edge from the 
manipulator node by searching the edge table and write ½ in the cell of matrix for start and end 
vertex of related edge. A sample for Plazy and Qlazy is as follows. 

 
Using synthesis matrices and Vold column matrix, we can calculate the new set of mass nodes as 
follows. 
       1−= j

old
j

lazy
j

new VPV + 1−jj dQlazy    <eq. 4.3> 
 
where, j

newV is new mass nodes and 1−jd  is column matrix consisted of detail coefficients. Detail 
coefficients are defined in the pre-processing step for constructing coarse model and refined 
model. 
 
      
6. Results 
 
In order to evalute the effectiveness of animation, we implemented the proposed adaptive and 
non-adaptive mass-spring method in Pentium III PC with 1GHz CPU and 1Gbyte RAM. We 
compared the execution time and the behaviour of coarse, refined and locally refined models 
based on the displacement variance of nodes which have the large magnitude of deformation. 
Figure 6.1 shows  the original mass-spring model in coarse and refined detail levels. Figure 6.2 
shows the locally refined mesh of original mass-spring model by proposed method. Table 6.1 
summarizes the number of springs and the execution time  until 1000 simulation time steps for 
each model. 
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                          (a)  coarse model                                      (b)    refined model 
Figure 6.1  Original mass-spring model 

 

                             (a)  manipulator node ID: 100                  (b)    manipulator node ID : 104 
Figure 6.2  Locally-refined model 

 
 
  

No. of nodes  No.of springs Execution time (sec.) for 
1000 time steps  

Refined model 550 1644 18.096 Conventional 
method Coarse model 139 411 6.249 
Proposed 
method 

Locally Refined 
Model 

151 447 7.36 

Table 6.1. Computation time comparison with conventional  Mass-Spring method 
 
In order to compare the overall behaviour of object, we computed the accumulated displacement 
of nodes in the refined area and displacement variance of the manipulator node according to 
simulation time. Figure 6.3 shows the accumulated displacement values and Figure 6.4 depicts the 
behaviour of the manipulator node. 

Figure 6.3 Comparison of accumulated displacement of sampling nodes  
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Figure 6.4 Comparison of variance of y-coordinates for manipulator node 
 
The computation time is reduced about 60 percent of conventional refined mass-spring models 
and overall behaviour of refined model is preserved. Figure 6.5 depicts the geometrical 
deformation when we pull the manipulator node (green circle). 
 
 

 
 

Figure 6.5  Geometrical deformation by locally refined method  
 
 
7. Conclusion 
 

We have developed an adaptive mass-spring model that can be animated at different levels of 
detail in order to reduce the computational effort while ensuring a same global behaviour for the 



refined deformable model. We apply the surface wavelet method for the local subdivision surface. 
The local synthesis and analysis filters are dynamically constructed for wavelet transformation 
based on the location of the manipulator node. The winged-edge data structure enables us to 
detect the adjacent nodes, faces and springs in the constant time, which is necessary to construct 
synthesis and analysis filters. We can define the extra mass nodes by multiplying the existed mass 
nodes by synthesis filters. As the results of comparison with conventional and adaptive mass-
spring model, the behaviour pattern of the locally refine model using the adaptive method is very 
similar to fully refined mass-spring model, while the computational time is reduced about 60 
percent. The performance gain is more substantial as the number of nodes and springs increase. 
Dynamically determining the optimal area for local refinement based on the magnitude of 
deformation of each node remains as a future work. Moreover, we’ll apply our adaptive 
approach to FEM and extend surface meshes to tetrahedral meshes in order to improve the 
realism of deformation.             
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