
 Adaptive Mass-Spring Simulation
using Surface Wavelet

 Yoo-Joo Choi1, Min Hong2, Min-Hyung Choi3, Myoung-Hee Kim1

1Dept. of Computer Science and Engineering, Ewha Womans University, Seoul, Korea

2 Bioinformatics, University of Colorado Health Sciences Center, Denver, USA
3 Dept. of Computer Science and Engineering, University of Colorado, Denver, USA

1{choirina, mhkim}@ewha.ac.kr

2Min.Hong@UCHSC.edu , 3minchoi@acm.org,

Abstract. This paper presents an efficient approach to represent the animation of the deformable objects
using adaptive spatial resolution. We introduce the multi-resolutional mass-spring model that is locally
refined using surface wavelet to reduce the computational effort while ensuring a same global behaviour for
the deformable object. In the animation of deformable objects, the part of the object that gets the external
force is refined in higher level of detail and the mass values of mass nodes in the local part are changed in
order to preserve the total mass of the object. Triangular mesh surface can effectively be subdivided or
simplified using local synthesis filters and analysis filters. The local synthesis and analysis filters are
constructed in on-line processing when the large magnitude of object deformation is detected. We exploit
“winged-edge” data structure in order to detect the neighbouring faces and edges in constant time. The
proposed method which is independent of the regularity of the initial mesh reduces computational cost in
effect while ensuring behaviour of the object in the refined model.

1. Introduction

The real-time interaction with deformable objects plays a crucial role in many interactive virtual
reality applications. The applications related to surgical simulation particularly demand the real-
time animation of deformable object according to a user’s interaction. Among the several
methodologies for physically-based modeling, mass-spring models are widely applied in the
virtual reality application because they are effective in computational cost and simple to
implement. However, even the mass-spring models including many mass nodes and springs for
representing more complex deformation makes it difficult to simulate the deformation in real time.
In the case of the large mass-spring models, the nodes largely affected by the external force are
usually the subset of total nodes and the rest of nodes mostly remain still or oscillate invisibly.
However, computation for deformation covers the entire nodes composed the object and it
makes the real-time simulation difficult. Therefore, combining locally refinement techniques with
physically-based modeling have been applied in order to reduce large amount of computation
while ensuring the global behaviour of detailed model. In this paper, we propose the adaptive
mass-spring model which is locally animated at different levels of details using surface wavelet
which is effective to subdivision and simplification of surface mesh.
The remaining sections of this paper are as follows. In section 2, we briefly review the researches
on the deformable modeling and adaptive method in physically-based animation. We discuss a
conventional mass-spring models and surface subdivision method using surface wavelet in
section 3 and 4. We present our adaptive refinement scheme combined with mass-spring model
in chapter 5. In chapter 6, we discuss the result of implementation and we finally suggest the
conclusion and future works in chapter 7.

2. Related Work

Physical accuracy and real-time performance are trade-off in animating deformable objects. In
the case of mass-spring system, the equations of motion are integrated independently for each
particle, which make calculations fast. However, physical accuracy of mass-spring system is
lower than that of deformable models using Finite Element Methods (FEM). Conventional FEM
uses exact differential operators which require solving a large sparse system. As a result, it is less
compatible with real-time applications. Explicit finite element method uses similar animation way
to mass-spring case, in which each node of the FEM mesh dynamically integrates its motion from
the positions of adjacent nodes. This method gives more accurate results than mass-spring
system. However, computing deformation at a fine discretization level requires a fine sampling
that prevents real-time performances. Some previous work uses LOD (Level Of Detail) to
locally refine a deformable model in regions of interest. Hutchinson et al. represent a piece of
draped cloth by adaptive mass-spring model which refines the regions of high curvature [1].
O’Brien simulates the fracture of glass by refining a tetrahedral mesh along fracture lines [2]. Wu
et al. propose a scheme for mesh adaptation based on an extension of the progressive mesh
concept to produce a diagonal mass matrix that allows real time computation [3]. Debunne et al.
propose a method of physically-based modeling that combines a linear finite volume-based
mechanical model with a non-hierarchical refinement technique based on Voronoi concept [4].
The relationships between disparate resolution meshes are maintained using ghost nodes that
transmit the mechanical behaviour of a mesh section at one resolution to adjacent mesh sections
of different resolutions. Kawai builds “hierarchical mass-spring models” in order to manipulate
the elastic object using coarse-to-fine representation of mass-spring models based on the degree
of deformation [5].
The most of previous works assume that the initial fine mesh is of good quality. For example, Wu
et al. assume that angles within each triangle should be at least 20° and the valence of each vertex
should be less than 10. In this paper, we propose an adaptive mass-spring method based on a
surface wavelet concept, which is not independent of the regularity of the initial mesh and can
effectively subdivide or simplify the surface using analysis filters or synthesis filters. The triangular
mesh in the area that has a large magnitude of object deformation is locally refined by multiplying
by local synthesis filters.

3. A conventional Mass-Spring Model

The demands for real-time performance in modeling and simulation of deformable objects have
lead many researchers to concentrate on simple elastic models. Mass-spring model is a simple
discrete approximation of a continuous model assuming that the mass is concentrated on nodal
points and the nodes are connected with neighbor nodes with mass-less springs. Mass-spring
model is well studied and widely used for many simulations and animations. It is a simple physical
model, easy to program, and it demonstrates reasonably fast simulation speed. Despite the
drawbacks such as problems in finding proper spring coefficients and dealing with
incompressibility, mass-spring model is called for when the importance of numerical performance
and interactivity outweighs physical accuracy and general applicability. Mass-Spring model is well
suited for the interactive surgery simulation and medical animation where real-time feedback and
prompt responses are required. Simulating human organ using a mass-spring system consists of a
number of mass points and springs that connect the nodal points to propagate the energy. The
following figure illustrates the liver model with surface oriented mass-spring systems which consist
of mass points (green circles) and springs (yellow line).

Figure 1.1. Liver model with mass-spring model.

The governing Lagrange’s equation for mass-spring model is

iiiiiiii gfxkxxm +=++ &&& γ

where ix , ix& , ix&& are the position, the velocity and the acceleration respectively. im , iγ , ik are the
nodal mass, the damping coefficient and stiffness coefficient at node i , and ig is total force on
node i due to spring connecting node i to neighboring nodes. if is the external force at node i . We
use explicit Euler method to numerically integrate the ODE (Ordinary Differential Equation).
When the initial value of x is)(00 txx = , the estimate value of x at a later time ht +0
is)(0 htx + , where h is a parameter for step-size.

)()(000 txhxhtx &+=+

Using the Newton’s law maf = , acceleration and velocity of mass points can be written as a
pair of coupled first-order ODE:

mfxv /== &&&
vx =&

To calculate spring forces ig , the spring length at resting stager is pre-computed from the initial
positions of nodes that define an object’s original shape. The spring forces 1g and 2g between a
pair of mass points 1 and 2 at position 1x and 2x with velocity 1v and 2v are

()
x
x

x
xvkrxkg ds ∆

∆























∆
∆⋅∆+−∆−=1

12 gg −=

where sk and dk are spring constant and damping constant respectively. 21 xxx −=∆ is the

difference between the two points’ positions, and 21 vvv −=∆ is the difference between the two
points’ velocities. Given the external forces, the new position of every mass points is computed by
numerically solving the ODE.

4. Multi-resolutional analysis using Surface Wavelets

The starting point for multi-resolutional analysis is a nested set of linear function spaces

nVVV ⊂⊂ L10 with the resolution of function in Vj increasing with j. The basis function for the
space Vj are called scaling functions. The next step in multi-resolution analysis is to define the
wavelet spaces, denoted by Wj. Each wavelet space Wj to be the complement of Vj in Vj+1.
Thus, any function in Vj+1 can be written as the sum of a unique function in Vj and a unique

function in Wj. The functions we choose as a basis for W j are called wavelets. Matrix notation is
used to perform a wavelet transform [6][7]. We consider a function in some approximation
space Vj and assume that we have the coefficients of this function in terms of some scaling
function basis. We write these coefficients as a column matrix of values []Tj

jv
jj ccc 1)(0 −= .

The coefficients j
ic be thought of as the x-, y-,z- coordinates of a node points in 3ℜ . To create a

low-resolution version 1−jc of jc with a smaller number of coefficients v(j-1) values of 1−jc is
to use some form of linear filtering and down-sampling on the v(j) entries of jc . This process can
be expressed as a matrix equation

 jjcAc j =−1 <eq. 4.1>

where jA is a constant)()1(jvjv ×− matrix.
Since 1−jc contains fewer entries than jc , It is clear that some amount of detail is lost in this
filtering process. If jA is appropriately chosen, it is possible to capture the lost detail as another
column matrix 1−jd , computed by

 jjcBd j =−1 <eq. 4.2>

where jB is a constant)()1(jvjw ×− matrix related to jA . The pair of matrices jA and jB are
called analysis filters. The process of splitting the coefficients jc into a low-resolution version

1−jc and detail 1−jd is called analysis of decomposition. If jA and jB are chosen appropriately,
then the original coefficients jc can be recovered from 1−jc and 1−jd by using the matrices jP
and jQ :

 1−= jjcPc j + 1−jjdQ <eq. 4.3>

For triangular subdivision, the splitting step breaks each face of 1−j level into four sub-faces by
introducing edge midpoints to create a new mesh. The averaging step then perturbs the resulting
collection of vertices to create a mesh for j level according to the wavelet coefficients. Figure
4.1 depicts the averaging and perturbation of triangular mesh.

 (a) (b) (c)
Figure 4.1 Triangular subdivision :

(a) Initial face of j-1 level (b) the new mesh created by the splitting step
(c) the mesh of j level created by the averaging step.

5. Adaptive Refinement

The main idea of proposed method is based on the dynamic combination of different detail levels
of mass-spring models according to the location of manipulator node in order to reduce the mass
nodes and springs for computation and to preserve the overall behaviour of object. The
neighbouring area of manipulator node with the external force is locally refined by adding extra
masses and splitting the springs. And the masses of existed nodes in coarse level are modified in
order to preserve the overall mass of object.

Figure 5.1 the new mesh after locally refinement
Blue triangle : the forced node, Red circle : the inserted nodes in refined level,

Cyan circle : the initial nodes in coarse level

Figure 5.1 depicts how to locally refine the neighbouring area of manipulator node. The blue
triangle represents the manipulator node and the cyan circles represent the existed mass nodes in
coarse detail level. And the red circles express the inserted extra nodes and the red edges are the
inserted springs. The springs between two cyan circles-the existed mass nodes are divided into
two short springs by the extra nodes. The positions and the number of the extra nodes are
decided by the subdivision surface algorithm. We apply a surface lazy-wavelet as a subdivision
method. As a result of subdivision using lazy wavelet, each face at the distance of one spring from
the manipulator node is subdivided into four sub-faces and each face at the distance of two
springs which includes the extra nodes is subdivided into two sub-faces like Figure 5.1. In the
case of that the valence of the manipulator node is six, twelve extra nodes are added in the area at
the distance of one spring from manipulator node. That is, seven mass nodes are broken into
nineteen mass sub-nodes. Each mass of nineteen nodes is computed by

sNumNewNodevalence

MASS
MASS

valence

i
iold

jnew +

+
=

∑
=

)1(
0

,

, <eq. 5.1>

where, valence means the valence of manipulator node. i is an index for existed nodes in the
neighbouring area and j means an index for nineteen nodes. sNumNewNode is the number of the
extra nodes. We construct “winged-edge” data structure for mass-spring models in order to
effectively detect the neighbouring faces and edges. Winged-edge data structure is the boundary
representation method using edge’s ordered relation. The following information are saved for
each edge in the edge table.

• Start and end vertices of this edge
• Its left and right faces
• The predecessor and successor of this edge when traversingits left face
• The predecessor and successor of this edge when traversing its right face

Clockwise ordering is used for traverse. Figure 5.2 shows the information for the entry of edge a.
The four edge b, c, d and e are the wings of edge a and edge a is “winged”.

Figure 5.2 Winged-edge Data Structure and Edge table

Edge Vertices Faces Left
Traverse

Right
Traverse

Name Start End Left Right Pred. Succ. Pred. Succ.

a X Y 1 2 b d e c

The winged-edge data structure requires two more tables, the vertex table and the face table.
These two are very simple. The vertex table has one entry for each vertex which contains an edge
that is incident to this vertex. The face table has one entry for each face which contains an edge
that is one of this face’s boundary edges. Using winged-edge data structure, we can easily
answer the question: which vertices, edges, faces are adjacent to each face, edge, or vertex. The
winged-edge data structure can answer these queries in constant time [8].
We construct the synthesis and analysis matrices for local lazy wavelets in order to decide the
extra mass nodes when the manipulator node is selected by user interaction. We can easily find
the neighboring node and neighboring edges of the manipulator node using winged-edge data
structure. The synthesis matrix for decideing the extra nodes which break the edges in area of
onterest into two subedges is as follows.

where, Pm is matrix to decide the midpoints of edges, I means the indenty matrix.
In order to construct Pm matrix, we search the edges in the distance of one edge from the
manipulator node by searching the edge table and write ½ in the cell of matrix for start and end
vertex of related edge. A sample for Plazy and Qlazy is as follows.

Using synthesis matrices and Vold column matrix, we can calculate the new set of mass nodes as
follows.
 1−= j

old
j

lazy
j

new VPV + 1−jj dQlazy <eq. 4.3>

where, j

newV is new mass nodes and 1−jd is column matrix consisted of detail coefficients. Detail
coefficients are defined in the pre-processing step for constructing coarse model and refined
model.

6. Results

In order to evalute the effectiveness of animation, we implemented the proposed adaptive and
non-adaptive mass-spring method in Pentium III PC with 1GHz CPU and 1Gbyte RAM. We
compared the execution time and the behaviour of coarse, refined and locally refined models
based on the displacement variance of nodes which have the large magnitude of deformation.
Figure 6.1 shows the original mass-spring model in coarse and refined detail levels. Figure 6.2
shows the locally refined mesh of original mass-spring model by proposed method. Table 6.1
summarizes the number of springs and the execution time until 1000 simulation time steps for
each model.

















































=

2
1..

2
1

2
1

2
1..

2
1.

2
1.

.
2
1

2
1

.

.
2
1.

2
1

..
2
1

2
1

1...
.1..
..1.
...1

lazyP









=

m
lazy P

IP







































=

1.....
.1....
..1...
...1..
....1.
.....1
......
......
......
......

lazyQ





=

I
Qlazy

0

 (a) coarse model (b) refined model
Figure 6.1 Original mass-spring model

 (a) manipulator node ID: 100 (b) manipulator node ID : 104
Figure 6.2 Locally-refined model

No. of nodes No.of springs Execution time (sec.) for
1000 time steps

Refined model 550 1644 18.096 Conventional
method Coarse model 139 411 6.249
Proposed
method

Locally Refined
Model

151 447 7.36

Table 6.1. Computation time comparison with conventional Mass-Spring method

In order to compare the overall behaviour of object, we computed the accumulated displacement
of nodes in the refined area and displacement variance of the manipulator node according to
simulation time. Figure 6.3 shows the accumulated displacement values and Figure 6.4 depicts the
behaviour of the manipulator node.

Figure 6.3 Comparison of accumulated displacement of sampling nodes

Comparison of Accumulated displacement

0

5

10

15

20

25

1 2 3 4 5 6 7

sampling nodes

d
is
p
la
ce
m
en
t

Coarse Model Refined Model Locally Refined

displacement Y (node 98)

-15

-10

-5

0

5

1 2 3 4 5 6 7 8 9 10

times

d
is
p
.

Coarse Mode Refined Model Locally Refined

Figure 6.4 Comparison of variance of y-coordinates for manipulator node

The computation time is reduced about 60 percent of conventional refined mass-spring models
and overall behaviour of refined model is preserved. Figure 6.5 depicts the geometrical
deformation when we pull the manipulator node (green circle).

Figure 6.5 Geometrical deformation by locally refined method

7. Conclusion

We have developed an adaptive mass-spring model that can be animated at different levels of
detail in order to reduce the computational effort while ensuring a same global behaviour for the

refined deformable model. We apply the surface wavelet method for the local subdivision surface.
The local synthesis and analysis filters are dynamically constructed for wavelet transformation
based on the location of the manipulator node. The winged-edge data structure enables us to
detect the adjacent nodes, faces and springs in the constant time, which is necessary to construct
synthesis and analysis filters. We can define the extra mass nodes by multiplying the existed mass
nodes by synthesis filters. As the results of comparison with conventional and adaptive mass-
spring model, the behaviour pattern of the locally refine model using the adaptive method is very
similar to fully refined mass-spring model, while the computational time is reduced about 60
percent. The performance gain is more substantial as the number of nodes and springs increase.
Dynamically determining the optimal area for local refinement based on the magnitude of
deformation of each node remains as a future work. Moreover, we’ll apply our adaptive
approach to FEM and extend surface meshes to tetrahedral meshes in order to improve the
realism of deformation.

Acknowledgement

This work was supported in part by the Korean Ministry of Science and Technology under the
National Research Laboratory(NRL) Program and in part by the Korea Science and
Engineering Foundation under Engineering Research Center (ERC) Program.

References

[1] D. Hutchinson, M. Preston, T. Hewitt, Adaptive Refinement for Mass/Spring Simulations, In Proc. Of the

Eurographics Workshop on Computer Animation and Simulation, pages 31-45, Sep. 1996
[2] J. O’Brien and J. Hodgins. Graphical model and animation of brittle fracture, In Proceedings of SIGGRAPH’99, pages

137-146, 1999.
[3] Xunlei Wu, Micahel S. Downes, Tolga Goktekin, Frank Tendick, Adaptive Nonlinear Finite Elements for Deformable

Body Simulation Using Dynamic Progressive Meshes, EUROGRAPHICS 2001, Volume 20 (2001), Number 3.
[4] G. Debunne, M. Desbrun, M. –P. Cani, and A. Barr. Adaptive simulation of soft bodies in real-tim e. In Proc. Computer

Animation 2000. Phyladelphia, PA, May 2000, pp 15-20
[5] Hirofumi Kawai, Elastic Object Manipulation Using Coarse-To-Fine Representation of Mass-Spring Models,

SIGGRAPH2001 Conference Abstracts and Applications, 2001.
[6] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and Werner Stuetzle,

Multiresolution Analysis of Arbitrary Meshes, In Proceedings of SIGGRAPH '95, pages 173-182. ACM, New York,
1995.

[7] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin, Wavelets for Computer Graphics: Theory and Applications,
Morgan Kaufmann, San Francisco, 1996.

[8] http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/winged-e.html
[9] Gilles Debunne, Mathieu Desbrun, Alan Barr, Marie-Paule Cani, Interactive Multiresolution Animation of Deformable

Models, In 10th Eurographics Workshop on Computer Animation and Simulation, Milano, 1999.
[10] Gilles Debunne, Mathieu Desbrun, Marie_Paule Cani, Alan H. Barr, Dynamic Real-Time Deformations using Space &

Time Adapative Sampling, ACM SIGGRAPH 2001, Los Angeles, 12-17 August, 2001.
[11] Fabio Ganovelli, Paolo Cignoni, Claudio Montani, Roberto Scopigno, A Multiresolution Model for Soft Objects

supporting interactive cuts and lacerations, Eurographics 2000, volume 19 (2000), Number 3
[12] James F. O’Brien, Jessica K. Hodgins, Graphical Modeling and Animation of Brittle Fracture, In SIGGRAPH 99

Conference Proceedings, pages 137-146, 1999.
[13] Xavier Provot, Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior, Graphics Interface,

pp 147-154, 1995
[14] Gullaume Picinbono, Herve Delingette, Nicholas Ayache, Non-linear and anisotropic elastic soft tissue models for

medical simulation, IEEE International Conference of Robotics and Automation, 2001.
[15] Mathieu Desbrun, Peter Schroeder, Alan Barr, Interactive Animation of Structured Deformable Objects, Technical

Report 034, Center for simulation of dynamic response of materials, 1999.
[16] S. Gibson and B. Mirtich. A Survey of Deformable Modeling in Computer Graphics, Tech. Report No. TR-97-19,

Mitsubishi Electric Research Lab., 1997
[17] D. Baraff. Linear-time dynamics using Lagrange multipliers. Computer Graphics Proceedings, Annual Conference

Series: 137-146, 1996

