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Abstract. Three-dimensional (3D) registration is the process aligning the range 
data sets form different views in a common coordinate system. In order to gen-
erate a complete 3D model, we need to refine the data sets after coarse registra-
tion. One of the most popular refinery techniques is the iterative closest point 
(ICP) algorithm, which starts with pre-estimated overlapping regions. This pa-
per presents an improved ICP algorithm that can automatically register multiple 
3D data sets from unknown viewpoints. The sensor projection that represents 
the mapping of the 3D data into its associated range image and a cross projec-
tion are used to determine the overlapping region of two range data sets. By 
combining ICP algorithm with the sensor projection, we can make an automatic 
registration of multiple 3D sets without pre-procedures that are prone to errors 
and any mechanical positioning device or manual assistance. The experimental 
results demonstrated that the proposed method can achieve more precise 3D 
registration of a couple of 3D data sets than previous methods. 

1   Introduction 

Range imagery is increasingly being used to model real objects and environments, 
and the laser sensors have simplified and automated the process of accurately measur-
ing three-dimensional (3D) structure of a static environment [1]. Since it is not possi-
ble to scan an entire volumetric object at once due to topological and geometrical 
limitations, several range images showing only partial views of the object must be 
registered. Therefore, registration to align multiple 3D data sets in a common coordi-
nate system is one of the most important problems in 3D data processing. For the 
registration process, each input data set consists of 3D points in the camera’s local 
coordinate system. In order to register all input sets, a local coordinate of each 3D 
data set is transformed to a common coordinate, and the transformation between two 
data sets can be represented with a homography matrix. More specifically, the process 
provides a pose estimate of the input views that is a rigid body transformation with 
the six rotation and translation parameters. In general the relative sensor positions of 



 

several range sets can be estimated by mounting the sensor on a robot arm or keeping 
the sensor fixed and moving like an object on a turn-table [2]. 

The registration problem is composed of two phases: coarse registration and fine 
registration. In general, the coarse process obtains a rough estimation of 3D trans-
forms by using mechanical positioning devices and manual processing. In order to 
refine the 3D estimate and make a complete 3D model, the fine registration is applied 
after coarse registration. The iterative closest point algorithm (ICP) is most widely 
used as the refinement method and calculates 3D rigid transformation of the closest 
points on the overlapping regions [3]. The two main difficulties in ICP, determining 
the extent of overlap in two scans and extending the method for multiple scans, have 
been a focus of the further research [4]. Namely, ICP requires a priori knowledge 
about an approximate estimation of the transformations, so starts with pre-estimated 
overlaps. Otherwise ICP tends to converge monotonically to the nearest local mini-
mum of a mean square distance metric. 

This paper presents an improved ICP algorithm that can automatically register 
multiple 3D data sets from unknown viewpoints. For a full automatic registration 
without an initial estimation process, we use the sensor projection matrix that is the 
mapping of the 3D data into its associated range image. The sensor projection matrix 
consists of the extrinsic and the intrinsic parameters as the camera projection does. 
The extrinsic parameters describe the position and the orientation of the sensor, and 
the intrinsic parameters contain measurements such as focal length, principal point, 
pixel aspect ratio and skew [5]. Since all range data is obtained with one range sensor, 
in general, the intrinsic parameters always remain unchanged. Then we use the co-
variance matrix to roughly obtain the extrinsic parameters that represent the relative 
3D transformations between two inputs. The improved ICP method iteratively finds 
the closest point on a geometric entity to a given point on the overlapping regions 
based on the sensor projections. By combining ICP algorithm with the sensor projec-
tion constraint, we can solve the local minimum problem. 

The remainder of the paper is organized as follows. In Sec. 2, previous studies are 
explained. In Sec. 3, an improved ICP algorithm is presented, and in Sec. 4, we dem-
onstrate the experimental results and compare with previous methods. Finally, the 
conclusion is described in Sec. 5. 

2 Previous studies 

In the last few years, several algorithms for 3D registration have been proposed and 
can be classified into the semiautomatic and the automatic methods. Semiautomatic 
approaches require manual assistance including specification of initial pose estimates 
or rely on external pose measurement systems, so they have a couple of limitations 
and setting of equipments is needed [6]. For example, a mechanical positioning de-
vice can only deal with indoor-sized objects and a manual assistance may be inaccu-
rate. On the contrary, automatic registration is to automatically recover the view-
points from which the views were originally obtained without a prior knowledge 
about 3D transformation. The main constraint of most automatic methods is that 
many pre-processes including feature extraction, matching and surface segmentation 



 

are required. In order to calculate the pose for arbitrary rotation and translation pa-
rameters, we need to know at least 3 corresponding feature points between the 3D 
data sets. Once correspondences have been established, numerical minimization is 
used to determine the object’s rotation and translation [7]. However, automatically 
detecting suitable features and matching them are very difficult, and currently no 
reliable methods exist. Furthermore, another approach is to ask the user to supply the 
features, but this is very labor intensive and often not very accurate. 

From the viewpoints of constructing a complete 3D model, the registration prob-
lem is divided into the coarse registration and the fine. In the coarse process we use 
usually mechanical positioning devices or manual processing to obtain a rough esti-
mate of 3D transforms. B. Horn proposed a closed-form solution to find the relation-
ship between two coordinate systems of 3D points by using a unit quaternion from 
covariance matrix [8]. In addition, a refinery technique is needed to improve the 3D 
estimate and make a complete 3D model. After that P.J. Besl., et. al. presented ICP 
that optimizes 3D parameters based on Horn’s method by using the closest points 
matching between two sets [3]. 

3   Proposed algorithm 

This paper presents an improved ICP algorithm for automatic registration of multiple 
3D data sets without a prior information about 3D transformations. The proposed 
iterative method uses the eigenvector of the covariance matrix and the sensor projec-
tion in an initial estimation. The eigenvector represents the direction of an object and 
defines a new axis at the centroid of the object. The analysis of the eigenvectors pro-
vides the relative sensor position in a common coordinate system. By using a cross 
projection based on the senor position, the overlapping regions can be detected. Fi-
nally, the improved ICP method iteratively finds the closest point on a geometric 
entity to a given point on the overlapping regions, and refines the sensor position. 

3.1  Finding overlapping regions by cross projection 

If an initial pose of the object differs so much from the real one, generally, it is diffi-
cult to construct a precise model due to self-occlusions. The more overlapping re-
gions in 3D data sets we have, the more precise registration can be performed. There-
fore, we assume that multiple-view range images have significant overlaps with each 
other [9]. By using an initial estimation of the relative sensor position and the sensor 
projection constraint, the proposed method finds the overlapping regions between two 
range data sets. The overlaps, which can be detected by two sensors at a time, are 
located in both 3D data sets. Fig. 1 shows overlapping regions on the first range data 
sets (R1) at the sensor S1 and the second (R2) at S2. 

The overlapping regions on R1 are measured at the second sensor pose (S2), and 
those on R2 are also measured at the first (S1). So we can define the overlapping re-
gions according to the visibility from two viewpoints. In order to find the overlapping 
regions, we propose a cross projection method that projects the first data set R1 into 



 

the second sensor position S2, and R2 into S1, respectively. Our method examines 
whether there are occlusions (scan errors) and self-occlusion. By analyzing the rela-
tion of the sensor direction vector and the vertex normal vector, we can find the over-
lapping regions. For example, when the angle between the sensor direction and the 
vertex normal vector (Vn) is lower than 90 degree, it is possible to scan the point by 
the sensor. Otherwise, we determine that the vertices are occluded, and those are not 
detected by the sensor.  

 
(S2－V1) · Vn1 > 0: Overlap region in the R1                 (1) 
(S1－V2) · Vn1 > 0: Overlap region in the R2 ,              (2) 

 
where V1 and V2 are vertex in R1 and R2, respectively. In short, the overlap in R1 is 
found by S2 and that in the R2 is by S1.  

In the case of a concave object, there may be self-occlusion regions in the 3D data 
sets. As described in Fig. 2, the self-occlusion vertices are projected to the same pixel 
of the second range image by the second sensor projection. In this case, we examine 
the distance of the sensor position between vertices, and select the closest vertex from 
the sensor. The proposed cross projection can exclude the occlusion vertices and the 
self-occlusions, and find the overlapping regions between two views. 

 
Fig. 1. Overlaps between two range sensors 

3.2  Sensor projection matrix and sensor position 

The sensor projection matrix is almost similar to the camera projection matrix. In 
general, the range sensor provides 3D range data sets (X) and the range image (x) 
corresponding to the range data sets. We can compute easily the sensor projection (P) 
and the sensor pose (S) using n corresponding points between range image and 3D 
range data sets [5]. The process is summarized as follows: 

a. For each correspondence (x and X), Ai matrix (2 × 12) is computed. 
b. Assemble n of Ai into a single A matrix (2n × 12). 
c. Obtain the SVD (Singular Value Decomposition) of A. A unit singular vector 

S2

S1 

Overlaps



 

corresponding to the smallest singular value is the solution p. Specifically, if A = 
UDVT with D diagonal with positive diagonal entries, arranged in descending 
order down the diagonal, then p is the last column of V. 

d. The P matrix is determined from p, and the sensor pose (S) is computed as fol-
low: 

S = M-1p4   ,                                   (3) 
 

where p4 is the last column of P, and P = M[ I | M-1p4 ] = KR[ I | -S ]. 
 

 
(a)                                                         (b)  

Fig. 2. The overlaps by cross-projection. (a) 1st range data from 1st sensor (b) 1st range data 
from 2nd sensor: the overlaps, occlusion and self-occlusion through the 2nd sensor and 1st 
range data  
 

Since a range data is defined in its local coordinate system, all initial sensor posi-
tions obtained from multiple data sets are almost constant. For registration, we should 
find an accurate sensor pose in a common coordinate system. An accurate initial es-
timate can reduce the computation load and make the result of registration more reli-
able. By using a unit quaternion from closed-form covariance with the given corre-
sponding point pairs in the two data sets, Horn suggested a method for registration of 
two different coordinate system [8]. Although our method is mathematically similar 
to Horn’s, we do not use the corresponding point pairs, which are usually obtained in 
pre-processing or geometric limitation of 3D views. The proposed algorithm uses a 
similarity of 3D range data sets of an object from different views instead of feature 
correspondences. More specifically, we use the orthonormal (rotation) matrix that can 
be easily computed by eigenvalue decomposition of the covariance matrix instead of 
a unit quaternion. The eigenvector of the covariance matrix provides the major axis 
and the minor of 3D point clouds, so that it defines a new coordinate of the object. 
Three eigenvectors of the covariance matrix represent x, y, and z axes of the 3D data 
set, respectively. The obtained covariance matrix is used to define the object’s local 
coordinate, and the centroid of the data sets is an origin of a new coordinate system.  

In the first stage, the centroid (C) of each range data sets is calculated as follows: 
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where V and N represent 3D vertex in the range data sets and the number of vertices, 
respectively. In addition, we compute the covariance matrix (Cov) of each range data 
sets as follows: 
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Let, Cov1 and Cov2 be covariance matrices of two range data sets (R1 and R2) re-

spectively. We find two object coordinates by using eigenvalue decomposition of 
both covariance matrixes from R1 and R2. 

 
 Cov1 = U1D1U1

T      
  Cov2 = U2D2U2

T ,             (6) 
 

where the diagonal matrices (D) and orthonormal matrices (U) represent eigenvalue 
and eigenvector of covariance matrices, then U provides a new object’s coordinate. 
R1 and R2 are defined again in the new coordinate by U1, U2 and the centroids of two 
range sets (C1, C2). In addition, a rigid transformation (T) is found by U1 and U2, and 
an initial relative sensor position is approximated by the rigid transformation (T). 

 
  








 −
=

−

103

12
1

21
T

T CCUU .                     (7) 

3.3  3D registration by improved ICP algorithm 

In general, ICP algorithm finds a rigid transformation to minimize the least-squared 
distance between the point pairs on the pre-determined overlapping regions. By using 
the sensor constraints and the cross projection, we can define the overlaps from the 
transformed data sets and the sensor positions, and then calculate 3D rigid transfor-
mation of the closest points on overlaps. More specifically, two range data sets are 
cross-projected into an initial position of the sensor, so an overlapping region is 
found. On the overlaps we find the closest point pairs, and calculate the transforma-
tions that can minimize the square distance metric between the points. The obtained 
transformations are used to optimize the initial sensor position for a more precise 
location. Our iterative method repeats the estimation of the sensor position and the 
detection of the overlapping regions. This process is repeated until the distance error 
value of closest point pair is minimized (Eq. 8), and we can optimize the sensor pose 
and 3D transformations of the range data. 
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where V1 and V2 are the closest point pairs of overlaps in two range sets and C2 is the 
centroid of V2. Rotation parameters (R) is found by eigenvalue decomposition of two 
covariance matrices and translation (T) is the displacement between the centroids of 
the points V1 and V2. Our method automatically finds the closest point pairs (V1 and 



 

V2) on the overlapping regions between two 3D sets from unknown viewpoints. Fig. 
3 provides the block diagram of the proposed algorithm 
 

 
Fig. 3.  Block diagram of the proposed method 

4   Experimental results 

We have demonstrated that the proposed algorithm can more precisely and efficiently 
register 3D data sets from unknown viewpoints than ICP method. The proposed algo-
rithm has been tested on various 3D range images, which contain from 60K to 100K 
data points. The simulation is performed on PC with Intel Pentium 4 1.6GHz. In order 
to compare performance of each method, we use the virtual range scanning system 
and the real laser scanner with the calibrated turntable. We fixed the virtual sensor 
and acquired the “COW” range data sets by rotating the object with +60 degrees 
along Y-axis. “FACE” data is actually acquired by Minolta Vivid 700 laser scanner 
and the calibrated turntable with the same degrees. Consequently, we can compare 
precisely performance of the previous method with that of the proposed because 3D 
transformations are known. 

Fig. 4 and 5 show the experimental results on two range data sets. As shown in 
Table 1, our method can make a precise registration without a precision milling ma-
chine or a prior 3D transformation between views. ICP algorithm computes 3D pa-
rameters of the closest points on the surface regions based on the sensor projection. 
On the contrary, the proposed method finds firstly the overlapping regions, and the 
points on these regions are considered. Therefore, the computation time for iteration 
in ICP is much longer than that in the proposed method. ICP converged to the local 
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minimum of a mean square distance metric on “FACE” data, so the results on 
“FACE” data have much more errors than those on “COW”. In the results by the 
proposed, the iteration times of “COW” is much less than those of “FACE”, because 
“COW” has more obviously the major and the minor axis than “FACE”. The results 
by the improved ICP show very small errors in each axis as shown in table 1, and 
these can be further vanished through an integration process. The proposed method 
obtains the major axis and the minor axis of 3D data sets to analyze the relative 
transformation, so it is difficult to register a totally spherical object.  

 
 

 
Fig. 4. Registration results of “COW” data sets. (a) Input range data sets (b) initial pose (c) 
registration by ICP (d) registration by improved ICP 

 

 

Fig. 5. Registration results of “FACE” data sets. (a) Real object (b) range data sets (c) initial 
pose (d) (e) registration by improved ICP (f) distance errors of the closest point pairs 

Feature point extraction algorithm and ICP are generally combined to make an 
automatic registration of 3D data sets from unknown viewpoints. In this paper, the 
spin image is used as feature point extraction for registration [10]. Fig. 6 shows the 
comparison of the registration results by three methods. Because the overlaps be-
tween two data sets in “WATCH” are too small, it is difficult to find the correspond-
ing points. As shown in Fig. 6 (a), only the proposed method accurately registered 
two data sets. The shape of “COPTER” has a bilateral symmetry, so the spin image is 



 

hard to establish the correspondence between two views. On the other hand, the pro-
posed method computes the major and the minor axis of the object, and can cope with 
its symmetry in Fig. 6 (b). Since “DRIVER” has little overlap regions and its hilt is 
cylindrically symmetric, the spin image is impossible to match the points between 
views. The shapes of hilt in “DRIVER” from different viewpoints are almost alike, so 
our method is difficult to determine uniquely the minor axis of the hilt Fig. 6 (c) 
shows both methods failed to achieve a precise 3D registration. 

Table 1. The experimental results on two range data sets 

   Previous ICP Proposed Method 
Iterations (times) 93 15 
CPU time (sec) 1867 87 

Rotation parameter 
Translation parameter 

θx :-2.392,  θy: 58.95,  θz: 0.709 
Tx: -0.352, Ty: 0.036, Tz: 0.047 

θx: -0.052, θy: 59.91, θz: 0.067 
Tx: 0.109, Ty: -0.12, Tz: 0.945 

C 
O 
W 

Registration Error θx: 2.392,  θy: 1.051,   θz: -0.709 
Tx: 0.352, Ty: -0.036, Tz: -0.047 

θx: 0.052,   θy: 0.09,  θz: 0.067 
Tx: -0.109, Ty: 0.12, Tz:-0.945 

Iterations (times) 92 87 
CPU time (sec) 694 123 

Rotation parameter 
Translation parameter 

θx: 5.624,   θy: 15.77,  θz: 7.469 
Tx: -4.31,   Ty: 1.173, Tz: 1.895 

θx: 0.125,  θy: 60.07, θz: -0.100 
Tx: 0.224, Ty: -0.03, Tz: -0.142 

F 
A 
C 
E Registration Error θx: -5.624, θy: 44.23,   θz: -7.469 

Tx: 4.31,    Ty: -1.173, Tz: -1.895 
θx: -0.125,  θy: 0.07, θz: 0.100 
Tx: -0.224, Ty: 0.03, Tz: 0.142 

 

Fig. 6. Comparison of previous methods and the proposed method 

(a) WATCH 

(b) COPTER 

(c) DRIVER 



 

5   Conclusions 
 
This paper presents an improved ICP algorithm that can automatically register multi-
ple 3D data sets from unknown viewpoints without the preliminary processes includ-
ing feature extraction and matching. The proposed method uses the sensor projection 
and the covariance matrix to estimate an initial position of the sensor. By using the 
cross projection based on the obtained senor position, we can find the overlapping 
regions. Finally, the improved ICP algorithm iteratively finds the closest point on a 
geometric entity to the given point on the overlapping regions, and refines the sensor 
position. The experimental results demonstrated that the proposed method can 
achieve a more precise 3D registration than previous methods. Further research in-
cludes a study on application to cylindrical or spherical objects. In addition, we will 
create photorealistic scene through 2D/3D alignment by using projections such as 
texture mapping. 
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