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ABSTRACT: Range scan point cloud registration problem has been well studied from the exten-
s-

est point (ICP) approaches. However most iterative point-wise methods work well only when the 
range images are close enough to solution configuratio
work or not from a given arbitrary configuration. Furthermore, the pair-wise nature of registration 
demands that each corresponding range image sequential pair must be known beforehand for a 
complete all-around registration from a batch of unordered range scan to build a complete 3D 
structure. This paper proposes a novel approach that aligns a set of unordered range images without 
knowing the correspondence between pairs to the point where ICP is guaranteed to succeed in its 
finer level registration. The registration task is nicely divided into two phases: the coarse registra-
tion which approximates the range images to a probable solution space, and the fine registration that 
takes the pre-aligned set of point cloud and further refines them to an optimally registered configu-
ration. By incorporating a multilevel hierarchical structure similar to the ones used in bounding 
volume collision detection methods, this paper aims to reduce unnecessary processes in registration 
pipeline.  

Keywords: Registration, range image, point cloud, laser 3D scanning.

1. INTRODUCTION
In recent years the number of scanning devices 
available in the market has been multiplied, re-
sulting in greater accuracy and cost competi-
tiveness of 3D scanning. Because of this greater 
number of scanning devices, varied implemen-
tations of 3D reconstruction using these devices 
have been developed, from recreating sceneries 
for entertainment purposes and building virtual 
organs for medical purposes, to terrain recon-
struction for robotic navigation. Besides the 
current applications, the nascent 3D printers 
technology greatly increases the possible num-
ber of future applications for 3D scanners. 
However, scanning and 3D reconstruction 
technology is limited to the range of view of the 
sensory devices. The foundation of the scanner 
limitations is the necessity of a set of scans that 
complete the total surface of the object from 

different points of view of the object. This set 
of images of the same object holds an unknown 
relation between them, a transformation matrix 
and the problem of finding the transformation 
matrix between corresponding range images is 
known as registration. 

The problem of registration has been exten-
sively explored with several different success-
ful approaches. The most commonly used reg-
istration method is ICP which has a very high 
success rate for cases in which the range images 
are close enough to the correct orientation, but 
a very low rate for objects in orientations far 
from their original relation; this situation has 
lead to the divergence of registration approach-
es, the coarse and fine registrations. Coarse 
registration makes an initial guess that ap-
proximates the range images close enough to 
their original relation and the fine registration 
that takes the initial guess and further refines it,
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a commonly used method for fine registration is 
ICP. Another limitation of these approaches is 
the pairwise nature of them which restricts the 
possible inputs to pairs of previously known 
corresponding range images. 

This work considers the possible limitations 
from some previously proposed approaches and 
addresses registration with a process that is able 
to coarsely register a set of unordered range 
images with no information of their orientation 
or translation to positions close enough to be 
refined with the final step of ICP. To do this, it 
uses surface descriptors and multiple hierar-
chical levels that are able to reduce the influ-
ence of external noises inherent to feature 
recognition algorithms as well as the large 
number of computations by using feature 
recognition filters that disregard improbable 
matching surfaces.  
The remainder of this paper is organized as 
follows: Section 2 discusses some of the pre-
vious researches in the registration matter. Sec-
tion 3 describes the hierarchical structure used 
to simplify the computations of the registration 
process. Section 4 explains the simplified 
computations used for the coarse registration at 
the pairwise phase and then the proposed met-
ric implemented to complete the coarse regis-
tration at the batch phase. Section 5 explores 
the sets of experiments applied for the verifica-
tion of the proposal. Finally, Section 6 contains 
the conclusions of this work and references for 
possible future works. 

2. RELATED WORK 
3D point cloud registration is a problem that 
has been widely studied. However the nature of 
these works has been mostly dedicated to a 
pairwise registration excluding information that 
could be used to identify correspondences from 
several possible pairs. In [1] Fukai and Xu ex-
plore the six degrees of freedom of a pair of 
point clouds and evaluates them with ICP to 
find the best transformation between them, 
however the utilization of the ICP alignment 
error still finds absolute minimum with incor-

rect matches and even with a pairwise registra-
tion the search of all possible combinations is 
computationally expensive; as a solution to the 
great number of computations Makadia et al [2] 
propose a feature recognition solution that is 
able to find the most representative points in 
both range images named constellation images; 
the registration is done considering just these 
constellation points, even though the successful 
results of this approach, the introduction of a 
bumped surface caused by a low quality scan-
ner will create the problem of identifying 
non-corresponding features for the constellation 
images; In [3] the exploration of the degrees of 
freedom is reintroduced but this time the com-
putations are sped up with a random point sam-
pling scheme and an octree to compute dis-
tances, the result is improved in the case of 
computational expenses however the random 
sampling introduces extra inaccuracy with the 
ICP error evaluation. [4] proposes the use of a 
random point sampling and surface descriptor 
named tensor that identifies the intersection 
with the other range image and obtains a metric 
that compares the possible pairs from a com-
plete set of range images, however the fact that 
it creates the tensor grids from randomly se-
lected points translates into the possibility that 
there may not exist correspondence between the 
points being registered. Finally [5] uses a fea-
ture description approach named local invariant 
feature; it describes the neighborhood for a 
point with a single scalar value then it com-
pares the features and finds the corresponding 
points, the limitation with this approach is that 
the scalar descriptor may be identical in many 
different points for special cases like cubic 
shapes, where the different planes rotated will 
have a very similar local invariant feature in 
each face or even in repetitive shapes which 
could lead to an incorrect alignment. 

3. HIERARCHICAL STRUCTURE 
Fine level registration has a very efficient solu-
tion in ICP for the cases in which the initial 
guess is close to the actual transformation. This 
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situation leads to the necessity of finding a 
proper coarse level registration. Considering 
the great amount of points included in each of 
the scans, the possible solutions search be-
comes highly expensive, even more considering 
the fact that a set of range images is to be com-
pared in a round robin to find the most probable 
correspondences. To solve the point cloud 
complexity problem it is proposed to simplify 
the point clouds in an organized structure that 
allows the acquisition of point vicinity and a 
hierarchical structure without further computa-
tions; this structure is similar to the structures 
used in collision detection problems. The result 
of these structures used in collision detection is 
that they limit the number of elements at each 
level improving the complexity for the range 
images correspondence search and by simpli-
fying the point clouds it reduces the induced 
noise influence during the feature recognition. 
The rest of this section will be focused in the 
explanation of the methodology used to create 
the hierarchical structure for the program. 

3.1 Simplified Points (Level 1) 
The first level of simplification this work pro-
poses is an ordered, quasi-evenly distributed 
representation of the point clouds stored in a 
30x30 array. This array is able to reduce the 
point clouds into a much smaller number of 
points that will be used for the coarse registra-
tion process instead of the thousands of points 
contained in the range images. 

The process starts by obtaining an axis 
aligned bounding box (AABB) for each range 
image. The AABB dimensions are used to ob-
tain the rough dimensions of the range images 
from the point of view of the scanner. The 
maximum and minimum values of the three 
axes are updated including all the point clouds 
to be registered. After that these dimensions are 
used to obtain the local surface size that will be 
used to compute the simplified points as in the 
following Equation (1): 
 )),,min(),,max(max(),,( pppppp zyxzyxzyxSize  (1) 
The next step is to use the local surface dimen-

sions that were obtained to create n local bins 
that contain the points within the bin bounda-
ries, to do this a binary search tree that returns 
the points within a certain range is used; the 
ranges for each bin are obtained by dividing the 
range image: 
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Once all the bins have their corresponding 
points contained, the following step is to com-
pute AABB for each bin; the obtained AABBs 
are then used to obtain the simplified points:  
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The points obtained are stored in the array 
which maintains the information ordered. The 
ordered array optimizes the access to the points 
stored and finds the neighboring point indices 
with a simple formula instead of computing 
distances with all the points:  

)1||0,1||0(),( jijiNP   (5) 
Then for the feature recognition filters, the 
normal vertex of each simplified point is com-
puted first computing the surface normals of all 
the neighboring quads: 
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Finally, the vertex normals are obtained using 
the surface normals of the neighboring quads: 
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Figure 1: Example of Simplified Points. 

3.2 Bounding Spheres (Level 2) 
Since the first level of simplifications results 

still in a great computation expense during the 
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registration, a second level of simplification is 
proposed to further reduce it. However, the use 
of surface description is necessary to filter im-
probable matches and so far previous methods 
lack the proper utilization of hierarchical levels 
and their surface information. To solve this 
problem, the second level is also used to con-
tain surface descriptors from the previous level. 
The second level is where all the surface in-
formation is kept which will later be used for 
the matching filters, making it the most fre-
quently accessed level in the hierarchical struc-
ture. The structure representing this level is an 
ordered array of bounding spheres. The bound-
ing spheres were chosen because the sphere in-
tersection determination is the fastest of all the 
bounding volumes. Each bounding sphere con-
tains a 3x3 level 1 simplified points allowing it 
to have an even description of the surrounding 
surface around the center point and an easy 
computation of the neighboring points which 
can be automatically found using the level 1 
ordered array. 
Using the 9 points for each corresponding sur-
face patch, the bounding spheres are computed 
like this:  
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Figure 2: Example of a Local Feature Histo-

gram. 

Then using the technique of surface patch 

description proposed in [8], with all the possi-
ble pairs of points contained within each 
bounding sphere, the local feature histogram is 
created. For each element of the Level 2 struc-
ture a histogram is stored so that it can be 
compared to filter improbable surface matches. 
 

 
Figure 3: Example of Bounding Spheres 

simplification. 

3.3 Bounding Boxes (Level 3) 
While executing registration at the second 

level, it can be observed that several computa-
tions still happen even where the collision be-
tween range images is not happening. Consid-
ering how collision detection algorithms solve 
this problem with higher hierarchical levels that 
simplify the mesh to avoid unnecessary colli-
sion computations, the third level encompasses 
level 2 bodies to reduce computations. The 
third contains a 2x2 bounding spheres set 
within an ordered array of AABBs. The choice 
of bounding volume in this case is because not 
all the resulting simplified points meshes are 
approximately even in their x and y dimensions 
and that causes that the resulting bounding 
spheres become too large in order to contain the 
points from level 2 which would not be an ac-
curate representation of the range image. It was 
found in our experiments that a correct surface 
match was volatile due to the level of detail lost 
at this simplification scheme; because of this, 
the third level is used solely with the purpose of 
collision detection.  

After this level, further simplification of the 
point cloud becomes so rough that it does not 

represent the range image and as a result it only 
increases the number of operations needed to 

find if the range images are overlapping.   
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Figure 4: Example of AABBs simplification. 

4. COARSE REGISTRATION 
One of the main purposes of this approach is to 
find an accurate initial guess that is close 
enough to the actual transformation of a set of 
range images so that the ICP algorithm can 
further refine the transformation using the point 
to point distance optimization. The related 
works that have been mentioned so far in this 
work cover a wide area of ideas from brute 
force approaches where the degrees of freedom 
are exhaustively explored to the feature detec-
tion algorithms that refine the meshes to a small 
number of points that are later optimized with 
ICP variations. 
Our proposal to solve this problem is divided in 
two stages: first the pairwise registration in 
which all the possible pairs of range images are 
explored to find possible matching surfaces, 
and second the batch registration that decides 
the order in which range images should be reg-
istered. In order to find the batch registration it 
is necessary to obtain an evaluation metric from 
the pairwise registration process so that it can 
be identified which is the best combination. 
The proposal in this case is to take advantage of 
the hierarchical structure to speed up the com-
putation and use the feature descriptors to re-
duce even further the exploration.  

4.1 Pairwise Registration 
The main idea of this work for the coarse 

registration integrates aspects of the related 
works that have been explored in Section 2. 
The exhaustive exploration of the combination 
of points is used to find the orientation and 
translation of the range image that is being reg-
istered. This approach takes elements proposed 

in [1] and [3] where they explore exhaustively 
the transformation space; but our solution pro-
poses to limit the range of transformations us-
ing a simplification structure. Considering [6], 
a hierarchical structure was implemented; 
however, instead of neglecting all the infor-
mation included in the point clouds, a mul-
ti-level hierarchy is used where the level of de-
tail keeps incrementing as it advances in the 
hierarchical tree. The hierarchy levels serve to 
improve the process as well by speeding up the 
verification. Another contribution in this work 
is the use of feature filters, the proposed algo-
rithm takes the feature description to filter out 
transformations that are not probable by using 
just similar surfaces to register pairs of points. 
This modification maintains all the information 
available to execute the metrics of the registra-
tion quality instead of limiting the number of 
points available for the registration where some 
of the remaining points may not be part of the 
overlapping area between the range images. 

Figure 5: Pairwise Coarse Registration Exam-
ple 1. 

The first step is to explore all the possible 
level 2 pairs formed from the two range images. 
The process starts by choosing the central point 
from a bounding sphere from the source range 
image and the destination range image; in this 
case the central points are already known 
thanks to the ordered arrays. Then the histo-
grams corresponding to each bounding sphere 
are compared as a filter, in the case that the pair 
meets the criteria, it continues to the next step, 
otherwise the pair is discarded. For the next 
step, the normal from that central source point 
in the range image to be registered is then ro-
tated to obtain the same orientation of the cen-
tral point in the destination range image and 
translated to make the points coincidental. Af-
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ter that, the orientation needs to go through a 
correspondence filter; if it fails, the pair is dis-
carded; otherwise a chain of overlapping vol-
umes is searched with the help of the hierar-
chical structure. All the possible pairs of points 
from level 2 are searched and the ones that have 
a value above the threshold are saved for the 
final metric evaluation. If no pair is found after 
all the tests then the algorithm determines that 
there is no correspondence between the range 
images pair. 

The algorithm proposes the use of two filters, 
a filter for the surface similarity and a filter for 
the correct orientation. The use of these filters 
intents to reduce all the possible mismatches as 
well as the total number of deep explorations in 
search of a chain of coincidences that would 
result time consuming and unproductive. 

The surface similarity filter uses the feature 
recognition techniques used in [6]. The surface 
histogram stores the information of the curva-
ture inside the level 2 bounding volume and it 
is used to compare the pairs. A matching patch 
of surface from the source range image should 
be similar to the matching patch of surface 
from the destination range image. Using the 
histograms distribution, they are compared bin 
to bin and a percentage of similarity is com-
puted, if the percentage is greater than the 
threshold percent then the points are treated as 
possible matches and kept for further explora-
tion. 

The next filter checks that the simplified 
points contained in the level 2 bounding 
spheres have a matching surface orientation 
between the explored pair. It starts by finding 
the closest point to each of the level 1 points 
between the source and destination range im-
ages; each of them should have a distance less 
than the half the length of the level 1 bins 
(MD/2) if not the pair is rejected. Then for each 
point, the closest point normal vector difference 
should be less than 10 degrees, if more than 3 
of the points fail it is rejected.  

And finally, the incremental orientation; the 
central point in both range images are incre-

mented, if the incremented points are not the 
closest to each other, then the source is rotated 
around the normal vector until the incremental 
closest points are coinciding. 

The next step is to find the number of level 2 
bodies intersecting each other from both range 
images, this process is named chain search. In 
this step all the surviving pairs are explored. 
For each explored pair the central points of the 
bounding spheres are aligned first. 

The chain search is where the suggested so-
lution takes advantage from the techniques used 
in collision detection and the constructed hier-
archy structure. The chain starts with the cur-
rent registered level 2 pair and checks for colli-
sion between them. The process is repeated to 
all the level 2 spheres that share the level 3 
parent node with the origin. It then follows with 
the neighboring level 3 volume from the source 
range image, it finds if it is intersecting with 
some other level 3 volume from the destination 
range image. Then it searches the intersections 
on the level 2 spheres and for the found colli-
sions it adds the pairs to the chain. This process 
grows at the level 3 volumes and explores 
deeper only in case of probable chains links 
inside the explored branch. 

After obtaining the chains of coincidences 
the pairs go into the last filter. The chains of 
coincidences whose number of elements are 
greater than the threshold are stored as possible 
final registrations and evaluated to determine 
the best possible option. 

All the pairs of points that have a chain 
larger than the threshold are then explored in 
detail to have its closeness measured. The tool 
used for this metric is a Quadtree that contains 
the destination range image. This Quadtree ob-
tains the minimum distances from all the level 
1 points in the source mesh to the destination 
mesh level 1 points in asymptotical time of 
O(logN). There are two possible ways of evalu-
ating the registration, using the average error or 
using the number of coincidences. 

The Quadtree is constructed from the root to 
the leaf nodes; it starts by obtaining the AABB 
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from all the points in the level 1 array. The 
AABB is then split by the half along its two 
greater axes. 

All the points are divided in the 4 resulting 
sections of the parent node. This process is re-
peated iteratively until all the leaf nodes have 
less than 8 points. The Quadtree receives the 
3D points from the source point cloud and it 
computes the closest leaf node to each point 
from the destination point cloud then returning 
the minimum distances between points. 
The registration starts with the point p in the 
level 1 hierarchy from the source. It computes 
the minimum distance from the point to the 
destination with the Quadtree. Then error ac-
cumulation is added with the minimum dis-
tance and after repeating the process for all the 
points available in the source range image the 
error is computed like this:  

n

pDist
Error

n

s
s )(min

  (11) 

The error is compared with all the probable 
registration chains and the registration with the 
lowest error is chosen as the correct coarse reg-
istration. 

Figure 6: Pairwise Coarse Registration Exam-
ple 2. 

Besides this metric, our approach includes a 
different metric. The other method uses the 
Quadtree also to compute the minimum dis-
tance from each point of the source image to 
the destination image, but in this case instead of 
using the distance to compute the error, the 
value is compared and if it is less than the 
threshold, an occurrences counter will be in-
cremented. The total number of occurrences is 
then used as the metric. 

4.2 Batch Registration 
The solution assumes that the range images re-

ceived contain no information concerning their 
order or which range image is supposed to be 
registered with the others. To solve this prob-
lem, first it registers all the possible pairs of 
range images formed with the first range image; 
the metrics returned from the pairwise registra-
tions are used as reference. Depending on the 
metric, the minimum error or the maximum 
number of occurrences, determines which is the 
corresponding range image. 

 The process is repeated with the next range 
image and the remaining available. The 
Quadtree is created with all the range images 
that have already been registered to increment 
the probability of finding the correspondence. 
These steps are repeated with all the remaining 
range images available or until the remaining 
point clouds have been found not coincident 
with the all the range images.  

The result of this approach however is de-
pendent of the point clouds exploration order 
which could lead to choose an incorrect first 
alignment that would close the cycle prema-
turely, because some remaining point cloud had 
no possible registration with the remaining 
range images. To avoid this problem, the solu-
tion was modified to a comparison between all 
the possible pairs of point clouds.  

The program compares the point clouds in a 
round robin to find the registration between 
them, from this possible registration the error is 
stored as a metric for that match. After all the 
matches are computed, the point clouds are 
sorted increasingly according to their number of 
possible matches. The possible matches are 
those pairs of point clouds that have at least 25 
percent of level 2 collisions. Starting by the 
point cloud with the least number of possible 
matches, the algorithm chooses the match that 
has the smaller level 1 error after the registra-
tion and then continues to the next point cloud 
in the sorted array. With this the algorithm 
finds a route that goes through all the point 
clouds with no inner cycles and that has the 
least error possible. However, the results of this 
approach were not satisfactory; this could be 
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explained by the fact that the minimum dis-
tance average depends of all the points and 
even the points outside the overlapping region 
account for the error, leaving a big space for 
local minima. To improve the influence of the 
non-corresponding area, the error metric was 
substituted by the number of corresponding 
points between the pair. This approach depends 
only of the points that are included in the found 
overlapping area and works as a better judge for 
the correspondences. 

Figure 7: Batch Coarse Registration Example 1. 
 

Figure 8: Batch Coarse Registration Example 2. 

5. RESULTS 
The experiments implemented to test the regis-
tration of sets of range images were developed 
first to denote the optimal values needed to ob-
tain a better performance of the hierarchical 
structure, second to understand the characteris-
tics needed to obtain a successful registration 
and third to find if given the correct range im-
ages set the algorithm could perform a correct 
registration regardless the initial position of the 
images. 

5.1 Parameter Settings 
The first set of experiments utilized a batch 

of range images of both scanned and virtual 
point clouds to define the simplified points  
array size. Since we know that the level 2 
structures consists of 3 x 3 level 1 points clus-

ters, then the squared array of level 1 must be a 
multiple of 3 to obtain an exact division in the 
previous hierarchical level.  

Table 1: Level 1 Array Size Registration. 
 Hierar-

chy (s) 
Coarse 

(s) 
Fine 

(0.85, 200) 
(s) 

Fine 
(0.50,0.50

) (s) 
Chair 
(18x18) 

2.285 2.264(*) 6.855(*) 1.328(*) 

Bunny 
(18x18) 

14.850 0.982(*) 70.048(*) 50.359(*) 

Chair 
(24x24) 

2.315 6.926(*) 8.219(*) 1.556(*) 

Bunny 
(24x24) 

15.303 1.968(*) 71.734(*) 15.361(*) 

Chair 
(30x30) 

2.100 26.500 6.953 1.273 

Bunny 
(30x30) 

15.225 8.491 246.414 39.116 

(*) = unsuccessful registration 
 
The level 1 array sizes were set and the time 

of the pre-computations, the time of the coarse 
alignment and the time of the fine alignment 
were obtained for the analysis. From the results 
we can observe that for lower values of the lev-
el 1 arrays, the pre-computation time is very 
close. For the registration we can observe how 
the time increments exponentially as the array 
size grows for both types of registration, how-
ever the lower sizes return no convergence for 
the batch registration; the cause of this is that 
the lower sizes fail to represent the level of de-
tail needed for feature recognition, therefore we 
can determine that the optimal level 1 size 
N=30. It is also important to remark that the 
fine registration returns a very similar result 
after the coarse registration with the configura-
tion of 200 iterations and 85 percent of sam-
pling and the configuration of 50 iterations and 
50 percent of sampling. The explanation of this 
is that the coarse alignment is close enough to 
the optimal solution of the ICP algorithm that 
the sampling and the iterations can be reduced 
and it will still return a close fine registration. 

The histogram comparison works as a filter 
to speed up the registration by eliminating the 
pairs that are not probable corresponding sur-
face patches because of their different surface 
properties. This means that a great number of 
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improbable registrations will be rejected and 
the time consumed analyzing these incorrect 
solutions will be saved.  

The second experiment took a pair of virtual 
range images and the percentage of acceptance 
was incremented starting at 50 percent until 95 
percent; this time was also saved for the analy-
sis and the outcome of the registration. 

It can be observed that the registration time 
is reduced dramatically as the parameter is in-
creased; however at the when we reach the 90 
percent of similarity no correct registration is 
found. That is because the representations of 
the surface patches are very similar to the orig-
inal but not identical due to the information lost 
during the simplification process. According to 
these results we can conclude that an 80 percent 
of similarity is enough to filter the improbable 
registrations and to keep a safe margin of de-
tection of surface coincidences.  

Table 2: Similarity Percentage Times. 
Per-
centage 

Mesh1 
(s) 

Mesh2 
(s) 

Mesh3 
(s) 

Mesh4 
(s) 

Mesh5 
(s) 

0.5 7.625 22.818 16.798 64.602 7.426 
0.55 7.305 19.657 16.784 59.149 7.459 
0.6 7.215 19.114 16.834 37.205 7.425 
0.65 6.894 18.875 16.525 26.584 7.387 
0.7 6.562 17.122 13.571 24.355 7.321 
0.75 5.682 13.649 11.987 22.795 7.258 
0.8 4.868 11.898 10.694 20.378 7.258 
0.85 4.126 10.489 9.167 13.488 6.951 
0.9 3.628 8.399 8.027 11.315 5.268 
0.95 2.865 7.479 8.519 11.537 6.121 
 

The minimum point to point distances are 
important for the creation of the chains of coin-
cidences and for the metric. The next experi-
ment explored the effects of the minimum dis-
tance. Considering that level 1 points are a grid 
that is spaced at a maximum distance of MD, 
the experiments take MD as the threshold value 
and then a percentage of it is used incremental-
ly to observe the outcome of the registration.  

The results of the experiments reflect that a 
0.50md is the optimal threshold value. The ex-
planation for this is that a point from the first 
point cloud that is correctly registered at the 

second point cloud could be at maximum in the    

Table 3: Similarity Percentage Results. 

exact center between two points in the grid. 
Greater values than this would account for in-
correct coincidences and the lower values 
would fail to account a number of correct coin-
cidences. 

5.2 Algorithm Validation 
Once the optimal parameter settings were 

defined, a series of experiments were developed 
to prove the effectiveness of the solution. The 
experiments test the overlapping area between 
the range images, the initial configuration of 
the range images and compare the proposed 
algorithm with the ICP alignment. 

Figure 9: Overlapping Percentage Alignment. 
 
To determine if a registration was correct, a 

four step metric was proposed. The test consist 
of the ICP error before the fine registration and 
after the fine registration checking if the error 
has indeed been optimized by the ICP algo-
rithm after the coarse registration. The next step 
measures the time it took to obtain the com-
plete registration including the hierarchical 
structure creation. And the final step consists of 
the intervention of a person; that is because for 
the computer the registration could be consid-
ered as a success if it has found any similar 
surfaces large enough to pass the threshold, 
even when it is an incorrect registration. It can 

Percent-
age 

Mesh1 
(s) 

Mesh2 
(s) 

Mesh3 
(s) 

0.5 OK OK OK 
0.6 OK (*) OK 
0.7 OK (*) (*) 
0.8 (*) (*) (*) 
0.9 (*) (*) (*) 
1.0 (*) (*) (*) 
1.1 (*) (*) (*) 

(*) = unsuccessful registration 
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only be determined if it is indeed correct or not 
by manual inspection. The last metric is a 
Boolean indicator that describes if a user ob-
serves a correct registration.  

Table 4: Overlapping Percentage Alignment. 
C. Points % Alignment 
531 91 OK 
449 77 OK 
412 71 OK 
334 57 OK 
299 51 OK 
223 38 (*) 

(*) = unsuccessful registration 
 

Table 5: 4-Step Metric. 
Mesh Coarse 

Error 
Fine 

Error 
Visual Time 

(s) 
1 0.00134 0.00027 OK 38.165 
2 0.01503 0.00121 OK 26.702 
3 0.00414 0.00027 OK 39.254 
4 0.02211 0.01199 OK 3.931 
5 0.08741 0.04074 OK 4.202 

 
This test was conducted to five pairs of cor-

responding point clouds. The point clouds were 
chosen as two pairs of scanned data point 
clouds that included a moderate level of noise 
that did not deform the overall shape of the ob-
jects (chair and car), then a pair of virtual data 
point clouds with large uniform surfaces (car), 
and finally two pairs of high quality real data 
point clouds with very unique surfaces (arma-
dillo and dragon). 

The results of this experiment show that the 
minimum percentage of overlapping area is 
near the 50 percent. This value could be re-
duced if all the threshold values were modified, 
however that would eliminate all of the filters 
advantages to reduce the computations pro-
posed in this work. 

The next set of experiments were use to de-
termine the reliability of the algorithm depend-
ing on the initial orientation of the range imag-
es was tested. The two independent experi-
ments check first the impact of the original po-
sition in the outcome of the algorithm and the 

second experiment checks the impact of the 
original orientation in the outcome of the algo-
rithm. 

The experiments were conducted on a pair 
of virtual range images. The translation test 
consists of moving one of the range images 
along the three axes, and registering the out-
come and the registration time. The measuring 
unit for the distance in this case is MD. 

The results of the experiment showed that 
the distance between point clouds did not affect 
the outcome of the algorithm, which is an ex-
pected result because the registration problem 
tries to optimize the distance between points in 
every proposed solution. 

The orientation test consisted of rotating one 
of the range images around the three axes be-
fore registering the point clouds. The experi-
ment showed that the registration algorithm 
works in almost every original condition with 
the exceptions of the 90 and -90 degrees around 
the z axis, this is because it does the rotation 
angle computations as a 2D planes and when a 
vector is aligned with the axis it would need a 
division by 0 which is an error. To solve the 
problem the orientation of that range image can 
be slightly modified to avoid the division by 0. 

6. CONCLUSIONS 
The main objective of this work is to devel-

op an algorithm that is capable of registering 
unordered range images with error induced 
from low definition scanning devices. To solve 
this problem, this work proposed an innovative 
method for the automatic range image registra-
tion that combines different types of registra-
tion: the optimization of a metric, the feature 
recognition and an exhaustive search of the 
transformation range with a multilevel hierar-
chical structure that reduces the complexity of 
the match evaluation but maintains details ac-
cessible to differentiate possible matches. 
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Figure 10: Coarse and Fine Registration Exam-
ple. 
 

After the experimentation conducted on the 
algorithm, it can be observed that the proposed 
hierarchical level approach optimizes the as-
ymptotical time of the registration problem. 
The utilization of the feature recognition filters 
also reduces the search space by eliminating all 
of the improbable solutions.  

Compared to other methods with hierar-
chical levels or feature recognition, instead of 
consisting only of two levels that are the com-
plete point clouds or a few points, the utiliza-
tion of the multiple levels is an improvement in 
the sense that it can keep valuable information 
for the registration easily accessible and be 
used as well as a simplification of discarding 
unviable solutions.  

Finally, the definition of the simplified mesh 
consists of a known maximum number and this 
fact compared to the approaches referenced in 

this work will reduce all the range images in-
dependently of the number of points in the 
range image. This approach applied to low def-
inition scanning devices, like some of the sets 
used in this project, results in a simplification 
that is detailed enough to find the surface prop-
erties but coarse enough that neglects the error 
induced by the scanner noise. 

The proposed solution is limited to cases in 
which the objects shape is unique enough to be 
differentiated from each different point of view. 
That is because the algorithm is designed to 
choose the greatest surface with the same de-
scriptor which in some cases like spherical 
shapes in general, large planes, or other uni-
form surfaces would find absolute minima in 
the same shapes that would not reconstruct the 
object but align incorrect surfaces. 

Because of the point simplification process 
the algorithm is supposed to work in cases 
where the contour is enough to find corre-
spondences. If the details mark the difference to 
find correct correspondences, then this ap-
proach would not be able to find it correctly, 
however the assumption of a low definition 
scan means that the level of detail is not good 
enough for those cases. 

The results of the experiments conducted to 
the different types of range images showed that 
as many other previous approaches this solution 
still finds correspondences for large surfaces of 
similar curvature even when they are not cor-
rect correspondences. This problem can be re-
duced by the type of scans that are delivered to 
the program. With a greater area of overlap 
between the range images, the greatest patch 
that can be found would be the corresponding 
overlapping areas of each point cloud. However, 
the unordered batch alignment for very uniform 
surfaces like chairs, cars, etc., translates into a 
greater problem, since possible matches could 
be found in almost every pair. In these cases the 
possible solution is to solve the registration in 
the delivered ordered cycle.  
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7. FUTURE WORK 
The results obtained from this work leave 

the door open for improvement by using some 
of the related works as reference. The use of the 
same structure configuration to parallelize the 
multi-view range images registration and speed 
up the process used in [2] as well as the update 
of the complete structured registered could be 
adapted to the proposed solution. Another area 
of opportunity is present in the evaluation met-
ric of the registration; the algorithm uses the 
ICP or ICRP metrics, however these methods 
are known to be faulty in the sense that there 
may exist absolute minimum values that are not 
the correct solution. The research of an extra 
constraint to neglect the non-coincident abso-
lute minimum value is a matter of great im-
portance for this and any other work related to 
the registration. 

Lastly, ICP uses a randomized sampling 
process to select the points that will be opti-
mized for the fine registration, however choos-
ing a small sample the algorithm may receive 
points outside the overlapping areas of the 
point clouds, and therefore it becomes neces-
sary to use a greater sample. The use of a large 
sample makes a very expensive process, but 
considering that our coarse registration is close 
enough and that the hierarchical structure is al-
ready detecting the intersections between the 
point clouds, then it could be possible to pass 
that information so that the sampling is only to 
be done in the intersecting areas. 
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