
BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS

COLLISION DETECTION

Sunhwa JUNG and Min-Hyung CHOI

University of Colorado Denver, USA

ABSTRACT: A new optimization technique is presented for the spatial subdivision of a

three-dimensional (3D) geometric model to improve the overall performance of continuous collision

detection between deformable objects. Spatial subdivision methods decompose a spatial geometric

region into a number of predefined voxels (the storage of 3D finite space, or a ‘cell’) that helps to

achieve close to linear performance in collision detection. An optimal performance can be achieved

when the subdivision is evenly dispersed. If there must be any subsequent re-subdivision the overall

performance is substantially hampered due to the overwhelming cost of the re-subdivision and its

associated overhead. Typically a spatial hashing technique is chosen to map a large number of 3D

cells into finite voxels. But previous spatial hashing approaches are unable to maximize spatial

subdivision method because they do not provide an optimal solution when there are conflicts

between changing dispersion patterns of cells for deformable objects and the cost of re-subdivision.

The problem of uneven concentration of cells is especially prominent when a deformable object is

squeezed and far-stretched. Our method can balance them in a simple way to maximize the

performance of spatial subdivision.

Keywords: Computational Geometry, Modeling of Objects, Collision Detection.

………………………………………………………………………………………………………....

1. INTRODUCTION

Despite recent advances in deformable object

simulation techniques, collision detection for

deformable objects is still a bottleneck

because of the requirement of frequent

updates of state and the potential of topology

changes. Many approaches have been

proposed to improve the overall performance

of collision detection especially for culling.

The three major culling approaches for

deformable objects are bounding volume

hierarchy (BVH), distance field calculation,

and spatial subdivision. Bounding volume

hierarchy and distance field calculation suffer

from the high cost of frequent updates and

refitting to topology change. Distinctively

spatial hashing for spatial subdivision

guarantees O(n) update cost without topology

restrictions. But there are two underlying

assumptions to make spatial hashing efficient:

the number of voxels is fixed and the size of

cell is fixed. If the number of voxels is varied

to optimize the size of memory, it is either

costly to maintain the mapping relationship or

it is impossible to keep a linear asymptotic

run time of spatial subdivision. The cell size

can be calculated at each update, but this can

be an additional computational burden. These

two assumptions cause following problems:

1. Unbalanced dispersions of triangles in

voxels (the clots of triangles): As the mapping

space is reduced (e.g. objects are squeezed

into a small space intensively), most triangles

are mapped compactly into only a small

portion of voxels. Figure 1 illustrates the

unbalanced dispersions among three

deformable objects in 2D. In this case, three

objects are dropped and squeezed.

2. Additional computations between

triangles in non-overlapping cells: Imperfect

PROCEEDINGS
13th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS
August 4-8, 2008, Dresden (Germany)
ISBN: 978-3-86780-042-6

2

spatial hashing introduces hash collision and

non-overlapping cells are mapped in the same

voxel. Traditionally a collision-detection

check is performed between all triangles in a

voxel. Employing a perfect spatial hash

function can reduce this problem to some

degree. But the different resolutions of objects

still cause irregular voxels. More importantly,

a perfect spatial hash function reduces the

overall performance of the spatial hashing

method due to overhead costs of memory

management (see the result from Teschner et

al [2]).

Figure 1. Spatial subdivision cells in a regular

grid: the number is the index of the voxel and

the total voxels are six (top), a well

distributed case (bottom left), and a squeezed

case (bottom right).

These problematic assumptions can be

removed by using non-uniform spatial

subdivision, but this decays the overall

performance of the spatial subdivision method.

For example, we implemented a spatial

hashing method that uniformly distributes

cells among voxels using sorting, but this

requires O(nlgn) asymptotic run time. Using

an r-tree structure might be an option, but it

cannot keep O(n) performance steady. These

problems are particularly apparent when

objects are under a heavy load with a

prolonged large deformation and when a large

number of objects are concurrently engaged in

compound collisions.

We maximize the spatial hashing method for

spatial subdivision method by abbreviating

these problems with a simple group hashing.

Our method can be easily implemented into

general spatial hashing techniques and it

achieves optimal performance by balancing

between the dispersion of cells and the cost of

subdivision through changing the group size.

2. RELATED WORKS

2.1 Collision Detection for Deformable

Objects

Collision detection among deformable objects

is well studied in survey by Jimenez et al [3]

and Teschner et al [4]. Collision detection can

be divided into broad phase detection and

narrow phase detection. While the

computational cost is the main issue in broad

phase, the accuracy is the main topic in

narrow phase. Our method is categorized as

broad phase detection.

2.2 Spatial Subdivision Using Hashing

Spatial hashing has been successfully

employed in the spatial subdivision method

for collision detection of rigid body

simulation and deformable object simulation

many researchers [1], [2], [5], [10]. A spatial

hashing for deformable objects proposed by

Teschner et al. [2] used a limited size of data

structure and a simple spatial hash function

for tetrahedron. They computed only static

collision contact triangle and barycentric

coordinates. Recently Eitz and Lixu [11]

introduced a hierarchical spatial hashing using

one dimensional array with XOR hash

function. Their method ran in a consistent for

different cell sizes with a slight computational

overhead, but hashing collision that reduces

the overall performance in hashing was not

considered seriously. A perfect spatial hashing

was tried using preprocessing and applied to

1

5 5

1 2 2

6 6

3 3

1 1

4 4

2 2

presentet by CHOI, Min-Hyung

3

collision detection between objects by

Lefebvre and Hoppe [6]. A perfect hash

function could not resolve the clods of

triangles in a voxel because although each

voxel will take one spatial cell, it requires a

large number of voxels and the number of

voxels unknown a priori. Moreover, the

irregularity of the number of triangles in

voxels is inevitable in regular voxel grids

because the mesh has different resolutions.

All previous methods decomposed the

problem for static collision detection without

considering the clods of triangles. However,

this is a significant problem for deformable

object collision handling because the

dispersion of triangles of an object can be

altered continuously. We extend spatial

subdivision to continuous collision detection

by solving the clods of triangles with group

spatial hashing to abbreviate the hash

collision effect.

Our contribution is maximizing the spatial

subdivision method for deformable objects

using group hashing, which reduces the

irregularity of the number of triangles in

voxels.

3. COLLISION DETECTION USING

GROUP SPATIAL HASHING

Our algorithm consists of following steps:

updating each triangle’s AABB, voxelization

(mapping AABB of triangles into the fixed

number of voxels), and performing an exact

collision test (continuous collision detection

and distance calculation) for the possible

collision pair triangles.

3.1 AABB Update

Since our method performs exact collision

detection for both continuous collision

detection and distance calculation, the AABB

of each triangle covers the entire trace of the

triangle in a given period and the threshold of

distance calculation is added. The result

AABB is slightly larger than for static

collision detection on it, yet overall an AABB

update is quick because there is no hierarchy.

3.2 Group Spatial Hashing

In order to voxelize objects, the size of the

cell and the number of voxels must be known

before mapping the triangles into the voxels.

The number of voxels and the size of the cell

can be computed while updating AABB of

triangles. In general, a hash function maps one

cell to one voxel in perfect hashing and

multiple cells to one voxel in hashing

collision. In our case, the size of cell and the

number of voxels are computed in the

beginning of each simulation once and keep it

constant during the simulation. Figure 2

illustrates the group mapping algorithm. The

optimal cell size is the length of the largest

axis of AABB and the optimal number of

voxels is the number of triangles divided by

five.

Figure 2. Group mapping: H voxels are

grouped into n groups using a simple index

calculation.

presentet by CHOI, Min-Hyung

4

We compared the performance with a

different number of voxels and the result

shown in Figure 3. When objects in the scene

do not move, the objects can be voxelized

once and keep the information for each

voxelization.

Figure 3. Performance comparison according

to the number of voxels: the computing time

for the whole process of collision detection is

recorded according to the number of voxels (x

axis is the number of voxels proportional to

the number of triangles and y axis is second).

Different numbers of triangles in a scene are

tested: (left top) cloth and bunny simulation

example with 90K triangles, (right top) cloth

example with 20K triangles, (left bottom) 14

tori example with 11,200 triangles, and (right

bottom) a 7 tori example with 5,600 triangles.

The result confirms that the optimal number

of voxels is about 20 percent of the number of

triangles. (left top) and (right top) are the

result on 1 node and (left bottom) and (right

bottom) are shown here are results on 4

nodes.

To reduce the dispersion of the number of

triangles in voxels, a hash function collision

resolution method can be applied such as

chaining and open addressing [7], [8].

Chaining requires extra dynamic storages and

cannot keep up O(n) performance. The open

addressing scheme can be expensive too when

the number of voxels is too small compared

the number of primitives because the open

addressing scheme searches throughout the

voxels for an empty voxel. Our goal is not

resolving hash function collision, but

distributing the triangles evenly in the voxels.

One voxel can contain triangles from more

than one cell, yet the numbers of triangles

should be evenly distributed. Each voxel

contains the mapped cell information after it

is mapped once.

Group hashing consists of three steps. First,

each triangle is divided into the size of the

cell and is found the index of each cell using a

spatial hash function. Second, a set of

possible indices of voxels for the triangle is

calculated. If one of the selected voxels is

empty or contains the cell, add the triangle

into that voxel. Third, if the triangle is not

added yet, the numbers of triangles in the

three voxels are compared and the triangle is

added into the voxel with the smallest number

of triangles and the cell is mapped to the

voxel. As n is increasing, the computational

cost for spatial hashing is growing but the

more evenly distributed problem sets are

produced. Since the computational cost for

voxelization increases along with the number

of groups, we selected a small number for n

(e.g., 4), which optimize the overall collision

detection process. The group mapping

algorithm is in algorithm 1.

3.4 Exact Collision Detection

The possible triangle pairs are checked to find

Algorithm 1 GROUP MAPPING (cell)

calculate index using hash function for cell

calculate group indices

smallest ← index

isMapped ←false

for all i in group indices and isMapped ≠ true do

 if cell is mapped to VoxelList[i] then

 map cell to VoxelList[i]

 isMapped ← true

 end if

 if VoxelList[smallest].length> VoxelList[i].length

then

 smallest ← i

 end if

end for

if isMapped ≠ true then

 map cell to VoxelList[smallest]

end if

presentet by CHOI, Min-Hyung

5

the exact collision time and the collision

location (barycentric coordinates). Fifteen

continuous collision detections and 15 static

collision detections are performed 9 for

edge/edge and 6 for triangle/point. For

continuous collision detections, coplanar

condition is used with optimized numerical

computation and removed from the redundant

collision detection pairs. The collision

detection result (e.g., collision time: dt and

collision location: barycentric coordinates) is

returned for collision resolution.

4. EXPERIMENTS

Our method was applied to various models

and simulation scenarios. Our experiments

conformed that when the number of voxels is

large enough, our method produces similar

results with the perfect hash function. The

size of the group for group spatial hashing

was 3 for all example simulations. Even a

small size of the group removes the extreme

case of voxels efficiently and improves

overall performance.

The numbers of triangles in voxels are

compared in terms of their dispersion and

maximum number.

Fig. 4. 14 Tori simulation: snapshot (top), the

comparison of the numbers of triangles in 73

highly dense voxels that have more than 150

triangles (bottom).

In this example, a torus model contains 800

triangles. Since the size of triangles in a torus

varies, clods of triangles are inevitable within

a model. This simulation contains 11.2K

triangles. Figure 4 shows squeezed tori under

prolonged contact and deformation and the

comparison of the number of triangles in

highly dense voxels. The maximum number

of triangles in a voxel with an imperfect

hashing method is 304, but it is reduced to

268 with our group mapping method. The

group mapping method does not reduce the

dispersion significantly because the clod of

triangles is caused by resolution variation,

however, inner culling works efficiently to

remove unnecessary possible collision pairs

for exact collision detection.

5. CONCLUSION

We present a fast and efficient voxelization

method to reduce the irregularity of collision

with a group mapping spatial hashing. Our

method improves the overall performance of

voxel-based collision detection by one order

of magnitude. Even though we performed

continuous collision detection and distance

query at the same time, the performance of

our method is comparable to the discrete

Voronoi method by Sud et al [9] and our

method has no limitations in topology and

accuracy. Our approach not only substantially

improves the performance but it is quite easy

to implement and integrate into existing

dynamic simulation environments. The

benefit of our method enlarges the applicable

deformable objects simulation from animation

to medical simulation. Currently, our method

does not consider topology changes such as

object fracturing while processing, and

considering this would be a natural extension

for the next step.

ACKNOWLEDGMENT

This research was partially supported by

National Science Foundation Career Award

ACI-0238521.

presentet by CHOI, Min-Hyung

6

REFERENCES

[1] J. Dingliana and C. O’Sullivan, “A

voxel-based approach to approximate

collision handling,” J. Graphics Tools,

vol. 10, no. 4, pp. 33–48, 2005.

[2] M. Teschner, B. Heidelberger, M.

Mueller, D. Pomeranets, and M. Gross,

“Optimized spatial hashing for collision

detection of deformable objects,” Proc.

VMV’03, pp. 47–54, 2003.

[3] P. Jimenez, F. Thomas, and C. Torras,

“3D collision detection: A survey,”

Computers and Graphics, vol. 25, no. 2,

pp. 269–285, 2001.

[4] M. Teschner, S. Kimmerle, G. Zachmann,

B. Heidelberger, L. Raghupathi, A.

Fuhrmann, M.-P. Cani, F. Faure, N.

Magnetat-Thalmann, and W. Strasser,

“Collision detection for deformable

objects,” Computer Graphics Forum, vol.

24(1), pp. 61–81, 2005.

[5] F. Ganovelli, J. Dingliana, and C.

O’Sullivan, “Buckettree: Improving

collision detection between deformable

objects,” Proc. Summer Conf. Computer

Graphics (SCCG’00), 2000

[6] S. Lefebvre and H. Hoppe, “Perfect

spatial hashing,” ACM Trans. Graphics,

vol. 25, no. 3, pp. 579–588, 2006.

[7] T. H. Cormen, C. E. Leiserson, and R. L.

Rivest, Introduction to algorithms,

Cambridge, MIT Press, 2001.

[8] J. I. Munro and P. Celis, “Techniques for

collision resolution in hash tables with

open addressing,” Proc. 1986 ACM Fall

Joint Computer Conf. (ACM ’86), pp.

601–610, 1986.

[9] A. Sud, N. Govindaraju, R. Gayle, I.

Kabul, and D. Manocha, “Fast proximity

computation among deformable models

using discrete Voronoi diagrams,” ACM

Trans. Graphics, vol. 25, no. 3, pp.

1144–1153, 2006.

[10] A. D. Gregory, M. C. Lin, S. Gottschalk,

and R. Taylor, “A framework for fast and

accurate collision detection for haptic

interaction,” in IEEE Virtual Reality

Conf., pp. 38–45, 1999.

[11] M. Eitz and G. Lixu, “Hierarchical

spatial hashing for real-time collision

detection”, Proc. the IEEE Int’l Conf. on

Shape Modeling and Applications

(SMI’07). pp. 61–70, 2007.

ABOUT THE AUTHORS

1. Sunhwa Jung is a PhD student in

computer science and information systems

at the University of Colorado Denver. His

research interests are in physically-based

simulation and collision detection and

resolution. Contact him at

sunhwa.jung@cudenver.edu.

2. Min-Hyung Choi is the director of the

Computer Graphics and Virtual

Environments Laboratory, and an

associate professor of Computer Science

and Engineering at the University of

Colorado Denver. Contact him at

min.choi@cudenver.edu.

presentet by CHOI, Min-Hyung

