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ABSTRACT: A new optimization technique is presented for the spatial subdivision of a 

three-dimensional (3D) geometric model to improve the overall performance of continuous collision 

detection between deformable objects. Spatial subdivision methods decompose a spatial geometric 

region into a number of predefined voxels (the storage of 3D finite space, or a ‘cell’) that helps to 

achieve close to linear performance in collision detection. An optimal performance can be achieved 

when the subdivision is evenly dispersed. If there must be any subsequent re-subdivision the overall 

performance is substantially hampered due to the overwhelming cost of the re-subdivision and its 

associated overhead. Typically a spatial hashing technique is chosen to map a large number of 3D 

cells into finite voxels. But previous spatial hashing approaches are unable to maximize spatial 

subdivision method because they do not provide an optimal solution when there are conflicts 

between changing dispersion patterns of cells for deformable objects and the cost of re-subdivision. 

The problem of uneven concentration of cells is especially prominent when a deformable object is 

squeezed and far-stretched. Our method can balance them in a simple way to maximize the 

performance of spatial subdivision.  

Keywords: Computational Geometry, Modeling of Objects, Collision Detection. 

……………………………………………………………………………………………………….... 

 

1. INTRODUCTION 

Despite recent advances in deformable object 

simulation techniques, collision detection for 

deformable objects is still a bottleneck 

because of the requirement of frequent 

updates of state and the potential of topology 

changes. Many approaches have been 

proposed to improve the overall performance 

of collision detection especially for culling. 

The three major culling approaches for 

deformable objects are bounding volume 

hierarchy (BVH), distance field calculation, 

and spatial subdivision. Bounding volume 

hierarchy and distance field calculation suffer 

from the high cost of frequent updates and 

refitting to topology change. Distinctively 

spatial hashing for spatial subdivision 

guarantees O(n) update cost without topology 

restrictions. But there are two underlying 

assumptions to make spatial hashing efficient: 

the number of voxels is fixed and the size of 

cell is fixed. If the number of voxels is varied 

to optimize the size of memory, it is either 

costly to maintain the mapping relationship or 

it is impossible to keep a linear asymptotic 

run time of spatial subdivision. The cell size 

can be calculated at each update, but this can 

be an additional computational burden. These 

two assumptions cause following problems: 

1. Unbalanced dispersions of triangles in 

voxels (the clots of triangles): As the mapping 

space is reduced (e.g. objects are squeezed 

into a small space intensively), most triangles 

are mapped compactly into only a small 

portion of voxels. Figure 1 illustrates the 

unbalanced dispersions among three 

deformable objects in 2D. In this case, three 

objects are dropped and squeezed.  

2.  Additional computations between 

triangles in non-overlapping cells: Imperfect 
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spatial hashing introduces hash collision and 

non-overlapping cells are mapped in the same 

voxel. Traditionally a collision-detection 

check is performed between all triangles in a 

voxel. Employing a perfect spatial hash 

function can reduce this problem to some 

degree. But the different resolutions of objects 

still cause irregular voxels. More importantly, 

a perfect spatial hash function reduces the 

overall performance of the spatial hashing 

method due to overhead costs of memory 

management (see the result from Teschner et 

al [2]).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatial subdivision cells in a regular 

grid: the number is the index of the voxel and 

the total voxels are six (top), a well 

distributed case (bottom left), and a squeezed 

case (bottom right).  

 

These problematic assumptions can be 

removed by using non-uniform spatial 

subdivision, but this decays the overall 

performance of the spatial subdivision method. 

For example, we implemented a spatial 

hashing method that uniformly distributes 

cells among voxels using sorting, but this 

requires O(nlgn) asymptotic run time. Using 

an r-tree structure might be an option, but it 

cannot keep O(n) performance steady. These 

problems are particularly apparent when 

objects are under a heavy load with a 

prolonged large deformation and when a large 

number of objects are concurrently engaged in 

compound collisions. 

 

We maximize the spatial hashing method for 

spatial subdivision method by abbreviating 

these problems with a simple group hashing. 

Our method can be easily implemented into 

general spatial hashing techniques and it 

achieves optimal performance by balancing 

between the dispersion of cells and the cost of 

subdivision through changing the group size.  

2. RELATED WORKS  

2.1 Collision Detection for Deformable 

Objects 

Collision detection among deformable objects 

is well studied in survey by Jimenez et al [3] 

and Teschner et al [4]. Collision detection can 

be divided into broad phase detection and 

narrow phase detection. While the 

computational cost is the main issue in broad 

phase, the accuracy is the main topic in 

narrow phase. Our method is categorized as 

broad phase detection.  

2.2 Spatial Subdivision Using Hashing 

Spatial hashing has been successfully 

employed in the spatial subdivision method 

for collision detection of rigid body 

simulation and deformable object simulation 

many researchers [1], [2], [5], [10]. A spatial 

hashing for deformable objects proposed by 

Teschner et al. [2] used a limited size of data 

structure and a simple spatial hash function 

for tetrahedron. They computed only static 

collision contact triangle and barycentric 

coordinates. Recently Eitz and Lixu [11] 

introduced a hierarchical spatial hashing using 

one dimensional array with XOR hash 

function. Their method ran in a consistent for 

different cell sizes with a slight computational 

overhead, but hashing collision that reduces 

the overall performance in hashing was not 

considered seriously. A perfect spatial hashing 

was tried using preprocessing and applied to 

1 

5 5 

1 2 2 

6 6 

3 3 

1 1 

4 4 

2 2 

presentet by  CHOI, Min-Hyung



 

 

 

3 

 

 

collision detection between objects by 

Lefebvre and Hoppe [6]. A perfect hash 

function could not resolve the clods of 

triangles in a voxel because although each 

voxel will take one spatial cell, it requires a 

large number of voxels and the number of 

voxels unknown a priori. Moreover, the 

irregularity of the number of triangles in 

voxels is inevitable in regular voxel grids 

because the mesh has different resolutions. 

All previous methods decomposed the 

problem for static collision detection without 

considering the clods of triangles. However, 

this is a significant problem for deformable 

object collision handling because the 

dispersion of triangles of an object can be 

altered continuously. We extend spatial 

subdivision to continuous collision detection 

by solving the clods of triangles with group 

spatial hashing to abbreviate the hash 

collision effect.  

Our contribution is maximizing the spatial 

subdivision method for deformable objects 

using group hashing, which reduces the 

irregularity of the number of triangles in 

voxels.  

3. COLLISION DETECTION USING 

GROUP SPATIAL HASHING  

Our algorithm consists of following steps: 

updating each triangle’s AABB, voxelization 

(mapping AABB of triangles into the fixed 

number of voxels), and performing an exact 

collision test (continuous collision detection 

and distance calculation) for the possible 

collision pair triangles. 

3.1 AABB Update 

Since our method performs exact collision 

detection for both continuous collision 

detection and distance calculation, the AABB 

of each triangle covers the entire trace of the 

triangle in a given period and the threshold of 

distance calculation is added. The result 

AABB is slightly larger than for static 

collision detection on it, yet overall an AABB 

update is quick because there is no hierarchy. 

  

3.2 Group Spatial Hashing 

In order to voxelize objects, the size of the 

cell and the number of voxels must be known 

before mapping the triangles into the voxels. 

The number of voxels and the size of the cell 

can be computed while updating AABB of 

triangles. In general, a hash function maps one 

cell to one voxel in perfect hashing and 

multiple cells to one voxel in hashing 

collision. In our case, the size of cell and the 

number of voxels are computed in the 

beginning of each simulation once and keep it 

constant during the simulation. Figure 2 

illustrates the group mapping algorithm. The 

optimal cell size is the length of the largest 

axis of AABB and the optimal number of 

voxels is the number of triangles divided by 

five.  

 

 
Figure 2. Group mapping: H voxels are 

grouped into n groups using a simple index 

calculation.  

 

presentet by  CHOI, Min-Hyung



 

 

 

4 

 

 

We compared the performance with a 

different number of voxels and the result 

shown in Figure 3. When objects in the scene 

do not move, the objects can be voxelized 

once and keep the information for each 

voxelization. 

 

  

  
Figure 3. Performance comparison according 

to the number of voxels: the computing time 

for the whole process of collision detection is 

recorded according to the number of voxels (x 

axis is the number of voxels proportional to 

the number of triangles and y axis is second). 

Different numbers of triangles in a scene are 

tested: (left top) cloth and bunny simulation 

example with 90K triangles, (right top) cloth 

example with 20K triangles, (left bottom) 14 

tori example with 11,200 triangles, and (right 

bottom) a 7 tori example with 5,600 triangles. 

The result confirms that the optimal number 

of voxels is about 20 percent of the number of 

triangles. (left top) and (right top) are the 

result on 1 node and (left bottom) and (right 

bottom) are shown here are results on 4 

nodes. 

 

To reduce the dispersion of the number of 

triangles in voxels, a hash function collision 

resolution method can be applied such as 

chaining and open addressing [7], [8]. 

Chaining requires extra dynamic storages and 

cannot keep up O(n) performance. The open 

addressing scheme can be expensive too when 

the number of voxels is too small compared 

the number of primitives because the open 

addressing scheme searches throughout the 

voxels for an empty voxel. Our goal is not 

resolving hash function collision, but 

distributing the triangles evenly in the voxels. 

One voxel can contain triangles from more 

than one cell, yet the numbers of triangles 

should be evenly distributed. Each voxel 

contains the mapped cell information after it 

is mapped once.  

Group hashing consists of three steps. First, 

each triangle is divided into the size of the 

cell and is found the index of each cell using a 

spatial hash function. Second, a set of 

possible indices of voxels for the triangle is 

calculated. If one of the selected voxels is 

empty or contains the cell, add the triangle 

into that voxel. Third, if the triangle is not 

added yet, the numbers of triangles in the 

three voxels are compared and the triangle is 

added into the voxel with the smallest number 

of triangles and the cell is mapped to the 

voxel. As n is increasing, the computational 

cost for spatial hashing is growing but the 

more evenly distributed problem sets are 

produced. Since the computational cost for 

voxelization increases along with the number 

of groups, we selected a small number for n 

(e.g., 4), which optimize the overall collision 

detection process. The group mapping 

algorithm is in algorithm 1. 

 

3.4 Exact Collision Detection 

The possible triangle pairs are checked to find 

Algorithm 1 GROUP MAPPING (cell) 

calculate index using hash function for cell 

calculate group indices 

smallest ← index 

isMapped ←false 

for all i in group indices and isMapped ≠  true do 

   if cell is mapped to VoxelList[i] then 

      map cell to VoxelList[i] 

      isMapped ← true 

   end if 

   if VoxelList[smallest].length> VoxelList[i].length 

then 

       smallest ← i 

   end if 

end for 

if isMapped ≠ true then 

  map cell to VoxelList[smallest] 

end if 
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the exact collision time and the collision 

location (barycentric coordinates). Fifteen 

continuous collision detections and 15 static 

collision detections are performed 9 for 

edge/edge and 6 for triangle/point. For 

continuous collision detections, coplanar 

condition is used with optimized numerical 

computation and removed from the redundant 

collision detection pairs. The collision 

detection result (e.g., collision time: dt and 

collision location: barycentric coordinates) is 

returned for collision resolution. 

4. EXPERIMENTS 

Our method was applied to various models 

and simulation scenarios. Our experiments 

conformed that when the number of voxels is 

large enough, our method produces similar 

results with the perfect hash function. The 

size of the group for group spatial hashing 

was 3 for all example simulations. Even a 

small size of the group removes the extreme 

case of voxels efficiently and improves 

overall performance. 

The numbers of triangles in voxels are 

compared in terms of their dispersion and 

maximum number.  

 

 

 
Fig. 4. 14 Tori simulation: snapshot (top), the 

comparison of the numbers of triangles in 73 

highly dense voxels that have more than 150 

triangles (bottom). 

  

In this example, a torus model contains 800 

triangles. Since the size of triangles in a torus 

varies, clods of triangles are inevitable within 

a model. This simulation contains 11.2K 

triangles. Figure 4 shows squeezed tori under 

prolonged contact and deformation and the 

comparison of the number of triangles in 

highly dense voxels. The maximum number 

of triangles in a voxel with an imperfect 

hashing method is 304, but it is reduced to 

268 with our group mapping method. The 

group mapping method does not reduce the 

dispersion significantly because the clod of 

triangles is caused by resolution variation, 

however, inner culling works efficiently to 

remove unnecessary possible collision pairs 

for exact collision detection. 

5. CONCLUSION 

We present a fast and efficient voxelization 

method to reduce the irregularity of collision 

with a group mapping spatial hashing. Our 

method improves the overall performance of 

voxel-based collision detection by one order 

of magnitude. Even though we performed 

continuous collision detection and distance 

query at the same time, the performance of 

our method is comparable to the discrete 

Voronoi method by Sud et al [9] and our 

method has no limitations in topology and 

accuracy. Our approach not only substantially 

improves the performance but it is quite easy 

to implement and integrate into existing 

dynamic simulation environments. The 

benefit of our method enlarges the applicable 

deformable objects simulation from animation 

to medical simulation. Currently, our method 

does not consider topology changes such as 

object fracturing while processing, and 

considering this would be a natural extension 

for the next step. 
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