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Abstract—Reliable occluded skeletal posture estimation is a
fundamentally challenging problem for vision-based monitoring
techniques. This is due to several imaging related challenges
introduced by existing depth-based pose estimation techniques
that fail to provide accurate joint position estimates when the line
of sight between the imaging device and the patient is obscured by
an occluding material. In this work, we present a new method of
estimating skeletal posture in occluded applications using both
depth and thermal imaging through volumetric modeling and
introduce a new occluded ground-truth tracking method inspired
by modern motion capture solutions. Using this integrated
volumetric model, we utilize Convolutional Neural Networks
to characterize and identify volumetric thermal distributions
that match trained skeletal posture estimates which includes
disconnected skeletal definitions and allows correct posture esti-
mation in highly ambiguous cases. We demonstrate this approach
by correctly identifying common sleep postures that present
challenging cases for current skeletal joint estimations, obtaining
an average classification accuracy of ∼94.45%.

I. INTRODUCTION

Accurate and reliable occluded skeletal posture estimation

presents an interesting challenge for vision-based methods

that heavily rely on depth-imaging [1], [2] to form accurate

skeletal joint estimations [3], [4]. Modern skeletal estimation

techniques provide a solid foundation for skeletal estimations

of users in non-confined areas with no visual occlusions,

however these techniques are not well suited for applications

that include visual obstructions such as respiration and sleep-

based studies where patients are heavily occluded by both

clothing and common forms of bedding. The clinical signifi-

cance of introducing an occluded skeletal posture estimation

that handles these cases is illustrated through the lack of

accurate estimate solutions used for wireless tidal volume

estimation [5] with clothing occlusions, long-term sleep-based

respiratory monitoring [6], [7], [8] with bedding occlusions.

While recent depth-based imaging methods [9], [10] have

begun exploring how to solve this problem, they still lack

two primary fundamental components of occluded posture

estimation: (1) the ability to provide an accurate ground-truth

with an occluding medium present and (2) the ability to deal

with extensive depth-surface ambiguities. These ambiguities

and direct occlusions incurred through depth imaging dictate

that an individual depth surface provided by these techniques

is insufficient to provide a reliable means of estimating an

occluded skeletal posture, and in most cases completely fail

to identify obscured skeletal joints. In this work, we explore
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Fig. 1. Experimental setup for detecting occluded skeletal joints that define
a patient’s posture with occlusions from standard bedding. Emphasis: The
proposed thermal-depth fusion skeletal estimation prototype that generates
and reconstruct the 3D thermal distribution of the patient’s occluded posture.

how the limitations of depth images can be supplemented

through integrating thermal imaging to introduce new methods

in occluded skeletal posture estimation.

Modern digital imaging devices contain several alternative

forms of imaging that utilize different wavelengths of the

electromagnetic spectrum that are capable of providing infor-

mation about internal skeletal structures through occlusions.

However, for both practical applications and in medical prac-

tice these imaging techniques are not well suited, convenient,

or safe for extended exposures over long periods of time, as

is common in most sleep studies. To strike a balance between

safe and reliable imaging techniques that allow us to gain

information about the occluded skeletal posture of the patient,

we develop a real-time posture estimation derived from both

depth and thermal imaging with the objective of providing a

reliable means of estimating occluded skeletal postures.

In this novel approach to occluded skeletal posture estima-

tion, we introduce three primary contributions: (1) we present

a thermal-based marker system for obtaining an occluded

skeletal ground-truth posture estimate derived from modern

motion capture techniques for defining occluded skeletal joint

positions, (2) develop a volumetric representation of patient’s

thermal distribution within an occluded region, and (3) intro-

duce a coarse-grained skeletal posture estimation technique

for identifying joint positions of visually obscured patients.

By addressing the challenges in occluded thermal imaging

and introducing a robust volumetric model for posture es-

timation, we evaluate the proposed method by assessing its

ability to correctly identify several common sleep postures and

generate accurate skeletal joint positions based on a patient’s

completely occluded joint positions.
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II. RELATED WORK

Skeletal posture estimation from imaging devices is a field

within computer vision that has received an extensive amount

of attention for several years since the introduction of widely-

available depth-imaging devices. Through the development of

several devices that support high-resolution depth imaging,

depth-based skeletal estimation has become a robust and

mature method of providing joint and bone-based skeletal

estimations. Notable contributions to this work include both

generations of the Microsoft Kinect, associated depth-based

algorithms, and the extensive set of work aimed at improving

these skeletal estimations. While these existing techniques

are well explored and reliable for most applications, they

are inherently ineffective for posture estimations that include

visual occlusions like those encountered in sleep-based studies.

Depth-based Skeletal Estimation. The pioneer work for

depth-based skeletal estimation from a single depth image for

the Microsoft Kinect devices [3], [4] utilized a combination

of both depth-image body-segment feature recognition and

training through Random Decision Forests (RDFs) to rapidly

identify depth pixel information and their contribution to

known skeletal joints and hand gestures, as introduced with

the Kinect2. Modern skeletal estimation techniques are built

around a similar premise and utilize an extensive number

of newer devices that provide high-resolution depth images.

These techniques utilize temporal correspondence, feature

extraction, and extensive training sets to quickly and robustly

identify key regions within a human figure that correlate to a

fixed number of joint positions that form a skeletal structure

of the user. The images in Figure 2 provide an illustration

of the most common skeletal configurations and associated

estimation results from recent techniques.

Fig. 2. Skeletal posture estimations from recent techniques from the Microsoft
Kinect, Primesense OpenNI (a, c), and improvements (b, d) by [3] that
utilize depth-imaging to accurately identify joint positions in non-occluded
applications. These methods have been further refined and extended with the
introduction of newer depth-imaging devices such as the Microsoft Kinect2.

These techniques have become increasingly robust and now

provide highly accurate joint estimations within the well

established constraints of these approaches. These constraints

minimize assumptions about the free movement of the human

skeleton and provide reasonable joint movements. However,

these techniques also provide a set of assumptions including:

background data can be quickly segmented (removed), the

user is relatively isolated within the depth image, and most

importantly - the line of sight between the device and the

user is not obstructed. These assumptions are integrated into

the foundation of these approaches, therefore the use of these

methods within sleep-based studies with occluding materials

covering the patient are not valid under these constraints.

Occluded Skeletal Posture Estimation. Recent vision-based

techniques have introduced an alternative method that relies

on a surface prior to allow skeletal posture estimations that

are recorded before the occluding medium is introduced [9].

This surface prior (depth-image) is then used as a collision

model within a physical simulation of a cloth that represents

the occluding surface to provide an approximation of what

the underlying posture would look like given the simulated

cloth model occluding the patient. However, there are several

potential problems with this approach: (1) the simulated cloth

under gravity model may not provide realistic behaviors such

as folding and tucking, (2) body movement may modify the

blanket for instances not covered in the simulation, and (3)

the patient may move and create additional wrinkles, folds,

layering, self-collisions, and complex interactions between the

patient and the cloth model. While this method provides a

good alternative for depth-imaging approaches, it is difficult

to ensure that the simulated cloth is consistent with real-world

deformation patterns and cannot emulate complex patent to

blanket interactions that may be observed.

Alternative methods derived from signal and image process-

ing [10] have also been introduced in an attempt to identify a

patient’s posture based on the spatial domain patterns that can

be extracted by processing cross-sections of the bed surface

using the Fast Fourier Transform (FFT). The objective of this

approach is to identify the spatial patterns common to most

postures and then identify them based on these traits. How-

ever, similar to other depth imaging approaches, the surface

data provided through a surface point-cloud does not contain

accurate information about the posture of the patient within the

occluded volume. Therefore in occluded applications, the high

level of surface ambiguities makes depth-based techniques ill-

suited for accurately estimating skeletal joint positions.

Thermal Image Posture Estimation. The use of thermal

imaging for skeletal posture estimation has not been exten-

sively utilized due to the fact that thermal images do not

provide a good estimate of the spatial coordinates required

for skeletal joints. Early work presented in [11] developed a

simple algorithm for detecting the skeletal structure within a

two-dimensional image, but the applications of this method are

limited and cannot be utilized to form a 3D representation of a

patient’s posture. Recently, there has been limited exploration

into thermal-based skeletal estimation, however the technique

has been used for detecting [12] and tracking generalized

human behaviors [13], [14] which include movement and very

generic postures such as walking, lying, and sitting. However,

none of these techniques have explored combining depth and

thermal imaging to improve skeletal estimates especially in

cases where occlusion makes depth-only methods invalid.

Therefore, to address the introduction of an occluding material

within skeletal estimates, we fuse both thermal and depth

imaging to provide a means of generating a thermal model

of the patient’s volume enclosed by the occluding medium.
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III. OCCLUDED POSTURE THERMAL CHALLENGES

The extensive depth of research used to provide reliable

techniques for accurate joint estimates using single depth

images has generated a significant number of solutions for

posture estimation in occlusion free applications. With the

introduction of occlusion mediums, the addition of thermal

imaging to assist in the identification of a patient’s skeletal

posture provides an intuitive extension of these techniques.

However, with the introduction of markerless skeletal posture

estimation and visual occlusions, thermal imaging retains an

extensive set of challenges. In this section we enumerate

several primary challenges associated with thermal imaging

that greatly complicate thermal-based skeletal estimation.

Occluded Ground-truth Estimation. One of the prominent

challenges with establishing an algorithm for occluded posture

estimation stems from the inability of current vision-based

approaches to define an accurate ground-truth of an occluded

skeletal posture. This is due to the use of imaging wavelengths

that are blocked by specific wavelength opaque surfaces which

makes most vision-based techniques inadequate for visualizing

internal structures occluded by surface materials. This includes

both the visible spectrum of RGB images and the short infrared

wavelengths used for depth imaging. Therefore, for skeletal

posture estimation with surface occlusions, the process of

determining a ground-truth estimation of the patient’s posture

is in most instances difficult or completely intangible.

Fig. 3. Skeletal posture estimation challenges associated with thermal
imaging. The image in (a) illustrates an ideal non-occluded thermal image but
illustrates non-uniform thermal distribution of a patient’s thermal signature, (b)
provides an illustration of heat marks left by a patient’s arm movements, (c)
illustrates thermal ambiguities of the patient during motion, and (d) illustrates
the patient’s residual heat left when the patient has been removed.

Contact Regions. The thermal conductivity exhibited by a

material near a heat emitting source can be simplified and

modeled using two different thermal transfer states: (1) a non-

contact state which defines a scalar distance that separates

the source and the receiving material and (2) a contact state

where heat transfer is greatly increased due to the thermal

contact conductance between the two materials. In the first

case, thermal conductance is reduced and defined as a function

of the distance between the emitting surface and the receiving

material which depends on the ambient temperature, tempera-

ture of the two objects, and the material composition of both

objects. This is true for the second case, however due to the

contact surface, the thermal conduction is greatly increased,

leading to a substantial increase in thermal intensity. Therefore

to accurately describe an object’s thermal contacts, the shape

of its surface, and emission intensity from a thermal image, the

physical properties of all materials must be precisely modeled,

which is impractical for patient-based applications.

Limb Occlusions. As with all single perspective depth-based

posture estimations, occlusions made by specific poses incur

constraints on the accuracy of the skeletal posture estimation

due to limbs occluding other joints within the depth image.

Additionally, with the introduction of an occluding material

tent-effect, limb position may contribute to a significant loss

of information about other skeletal joints due to the increased

occlusion volume introduced by the shadow of the occluded

material within the depth image.

Multi-Layer Occlusions. The apparent thermal distribution

of an occluded surface is directly influenced by both the

distance and temperature of the emitting surface, however

the number of occluding material layers between the thermal

device and the emission source introduces additional erroneous

ambiguities in the recorded thermal image. As materials are

placed on the patient, including clothes and bedding, the

materials may overlap in unpredictable ways leading to sharp

distinct features within the thermal image.

Intractable Heat-to-Surface Modeling. Identifying and gen-

erating an accurate surface model exclusively through the use

of thermal imaging is an ill-founded inverse physics problem.

This is because there is inherently an ambiguous relationship

between measured thermal intensity and the emission surface

that cannot be directly used to identify a spatial definition of

the emission surface. Thus depth-imaging remains a prominent

requirement for spatial modeling.

Non-uniform Heat Distributions. The thermal signature of

the human body has a substantial natural variation across

the surface of the skin that contributes to non-uniform heat

distributions. The premise of any thermal-based approach

to skeletal posture estimation assumes that the emission of

thermal energy from the surface of the skin is sufficient to

separate from both the background and other materials near

and in contact with the skin; however due to the non-uniform

distribution of heat through different skin regions and material

coverage, thermal intensities lead to ambiguities between the

patient’s skin and surrounding materials.

Movement and Residual Heat. As a challenge uniquely

associated with thermal imaging, thermal contact and residual

heat play a critical role in the image analysis of patient

postures. During the movement event and for a short period

of time after the movement, thermal intensities may indicate

false positives in posture estimations due to residual heat.
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IV. METHOD OVERVIEW

To provide a reliable means of estimating occluded skeletal

postures in any vision-based technique, the proposed method

must address the challenges presented by the data acquisition

methods used create a solid foundation for performing accurate

joint estimations. An immediate extension to current depth-

based skeletal estimation techniques is the integration of

thermal data to both identify and refine potential joint loca-

tions by analyzing thermally intense regions of the body and

limiting ambiguities within the depth image to provide better

joint estimates within the occluded region. However, while

this approach of combining both depth and thermal image

information alleviates some of the challenges and ambiguities

associated with depth-imaging, it also incurs the numerous

thermal challenges listed within Section III. Therefore to

provide a reliable posture estimation algorithm based on these

imaging methods, we mitigate the challenges introduced by

each device by forming a new thermal-volumetric model of

the patient’s body that can provide a robust foundation for

thermal-based skeletal joint estimates.

A. Thermal Volumetric Posture Reconstruction

Volumetric reconstruction for posture estimation refers to

the process of identifying and generating the extent and

geometric characteristics of the patient’s volume within the

loosely defined region constrained by a depth-surface. This

occluded region within the surface will be used to provide

what we define as the posture-volume of the patient. This

volume is strictly defined as the continuous region under the

occluding surface that contains both the patient and empty

regions surrounding the patient that are visually obscured. To

define a posture estimate based on this volumetric model, we

associate a fixed set of correlated skeletal joint positions within

the observed thermal distribution of this volume. This allows

a skeletal estimate to be identified from a known (trained)

thermal distribution which represents the patient’s posture

under the occluding medium. Figure 4 provides an overview of

this ideal posture model, the discrete volume approximation,

and skeletal joint structure defined by this model.

Fig. 4. Volumetric reconstruction of an ideal skeletal posture. The image in
(a) illustrates a discrete approximation of the patient’s volume. The image
in (b) provides an illustration of the mapping between a voxel representation
(black dots) of this volumetric data and the ground-truth skeletal estimate of
the posture (illustrated as a set of joints and associated bones).

Fig. 5. Overview of the proposed approach for reconstructing the volumetric
thermal data that contributes to the occluded skeletal posture estimation. This
includes the generation of the volumetric data with the skeletal ground-truth
for training and the real-time data with the provided head joint used during
the occluded posture estimation process.

This model shifts the foundation of the skeletal estimation

from identifying isolated joints in the two-dimensional imag-

ing domain to a three-dimensional voxel model that describes

both the volume of the occluded region containing the patient

and thermal distribution within this volume due to the heat

radiated by the patient’s skin. This form of modeling provides

a complete 3D image of the patient’s posture within the

occluded region as an identifiable thermal distribution that

can be assigned to an associated skeletal estimates that may

contain visually ambiguous joint positions through training.

The development of the volumetric posture model is moti-

vated from three primary observations based on patient thermal

images: (1) the process of identifying joint positions from

thermal images projected onto the depth surface is highly

unreliable due to contact region ambiguities, layering, and

non-uniform heat distributions, (2) intense thermal regions

within the image are generated by both joints and arbitrary

locations on the patient’s body, and (3) joints that have a

separation distance between the patient’s skin and the occlud-

ing material may be visually and thermally occluded, meaning

that they are not visible, but reside within this volume. Due

to these commonly occurring conditions that are not well

handled by existing methods, the proposed method is based

on creating a correlation between the patient’s volumetric

thermal distribution and an associated skeletal posture. Based

on this correlation, if the known skeletal joint positions are

provided for the observed thermal distribution, we can estimate

the patient’s skeletal posture even when the subject is highly

occluded, has several ambiguous joint positions, or the skeletal

components are disconnected.

B. Algorithm Overview

The premise of this approach is to reconstruct the unique

volumetric thermal distribution of the patient and correlate this

posture signature with an associated set of joints that defines

the patient’s corresponding skeletal posture. The introduction

of this process provides a robust method of identifying skeletal

estimates on volumetric data that contains unique thermal

patterns that are more reliable than depth features within a

recorded point-cloud surface. Therefore, based on our ability
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to reliably reconstruct this thermal distribution and associated

skeletal structure, the resulting correlation is then used to

populate a training model of discrete posture variants that can

be used to detect a patient’s subsequent postures. A high-level

overview of the thermal-depth fusion process used to generate

a thermal posture signature for a patient is defined below:

1) Thermal Cloud Generation (Depth + Thermal)

2) Patient Volume Reconstruction (Sphere-packing)

3) Surface Heat Propagation (Extended Gaussian Images)

4) Volumetric Heat Distribution (Thermal Voxel Grid)

This process is then divided into two primary directions:

(1) training for the correlation between the skeletal ground-

truth and the associated thermal distribution and (2) the

identification of input distributions to retrieve the patient’s

associated skeletal posture. This forms two different tracks

within the core algorithm of our approach which are defined

within the data-flow of our technique presented in Figure 5.

V. DEVICES AND DATA ACQUISITION

To facilitate a practical hardware prototype that incorporates

these two imaging techniques, the design incorporates two

low-cost devices that provide reasonable image resolutions

for sleep-based posture estimation within a controlled environ-

ment. Our prototype includes the Microsoft Kinect2 for depth

imaging and the Flir C2 hand-held thermal imaging camera.

A. Thermal-depth Fusion Prototype

The Kinect2 provides a depth-image with a resolution of

512x424 and the C2 contains an 80x60 thermal image sensor

array which is up-sampled to an image size of 320x240. To

configure the overlapping viewable regions provided by each

device, we have developed a single aluminum bracket to mount

the two devices into a simple prototype as shown in Figure

6. Based on the point-cloud data provided from the Kinect2

depth-image, we integrate the thermal intensity at each point

from the corresponding point within the up-sampled thermal

image provided by the C2 to generate the thermal-cloud of the

volume enclosing the patient due to the occluding material.

Fig. 6. Thermal posture device prototype. The two devices (Kinect2, C2) are
mounted with a fixed alignment provided by the bracket shown in (a). The
images in (b-d) illustrate the mount attached to the bed rail with both devices.

Fig. 7. Thermal posture ground-truth and training suit (a) with attachable
metal spheres (b). The suit is worn during the training process to identify the
relationship between the patient’s thermal volume and joint positions (c).

The alignment of the images provided by these devices

requires further image processing due to the vastly different

field-of-view (FOV) provided by each device. Therefore we

model the alignment transformation of the two camera based

on a simple linear transformation as a function of the distance

to the bed surface. Additionally, due to the limited FOV of

the C2 device, we rotated the device by 90[deg] to provide

the largest overlapping field-of-view possible.

B. Occluded Skeletal Estimation Ground Truth

One of the prominent challenges introduced with occluded

skeletal posture estimation is the inability of most vision-based

techniques to provide a reliable ground-truth estimation of

the patients skeletal posture while the occluding material is

present. For imaging techniques, this is a direct result of the in-

terference or complete occlusion of the patients posture due to

the external surface properties of the material that are obtained

through using limited regions of the electromagnetic spectrum

(such as the visible or infrared wavelengths). The reflection

based nature of these techniques minimizes the ability to

correctly infer surface features that correctly contribute to the

patient’s occluded posture. While other methods utilizing these

reflection-based imaging techniques have introduced interest-

ing ground-truth workarounds for approximating the surface

behavior of the occluding surface [9], this remains a significant

challenge in occluded posture estimation methodologies and

evaluation models.

To address this challenge we introduce a new thermal-

based skeletal ground-truth derived from common motion-

capture systems. As with common motion capture systems,

this simple thermal marker system is designed from a standard

form-fitting suit equipped with 9 solid nickel spheres with an

approximate diameter of 3.0[cm]. These solid metal spheres

are attached to the suit at various locations that correspond to

the joint positions of the patient. During the training process,

these markers emulate the methodology of tracking known

joint positions. This provides a highly-accurate method for

providing a ground-truth of the patient’s posture while an
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Fig. 8. Thermal surface point-cloud acquisition. The sequence of images illustrate the data collected from both the Microsoft Kinect2 and Flir C2 thermal
devices to obtain thermal and surface point-cloud data. The images (a-d) illustrate the collection of the infrared, depth, thermal, and thermal surface respectively
for a non-obscured view of the patient. The images (e-h) illustrate this data sequence for the same supine skeletal posture with an occlusion material present.
Surface details provided by depth imaging (f) fail to provide a reliable means of estimating skeletal joints (for example, identifying hand joint positions in
(e-f) is extremely difficult). Using the proposed ground-truth estimation, we can assert known joint positions through occluding materials.

occluding surface is present. The image provided in Figure

7 illustrates the simple design of the training suit with the

attached solid nickel spheres used in the training process.

The result of the thermal skeletal ground-truth is the product

of a simple adaptive thresholding and a connected-component

algorithm that identifies the thermally intense regions of the

spheres within the image. In the resulting thermal-cloud, the

spheres appear as small white regions indicating the locations

of the joint positions, as shown in Figure 8 (g). For each

grouping of points belonging to a joint, the unique joint

position is calculated as the center of mass of this cluster.

For labeling we employ a simple a semi-automated tool to

assist in the identification of the skeletal joints for the training

data. Based on the provided adjacencies, the system will

automatically generate the required skeleton. For occluded

joints, we introduce a partial skeletal structure (Figure 9).

Fig. 9. Thermal skeleton ground-truth. The ground-truth skeleton presented
in (a) illustrates a complete skeletal posture based on every supported joint
being identified. The skeleton presented in (b) represents the patient in a left
facing posture with the right shoulder joint completely occluded.

The disconnected skeletal structure we provide presents

a best-case posture estimate based on the provided thermal

information within the model. This allows us to provide a

partial solution for instances where the occluding material may

prevent several joints from being recognized in both thermal

and depth images, for which we have no obtainable solution.

VI. VOLUMETRIC THERMAL MODELING

Sleep-study occluded posture estimation offers a large re-

duction in both the degrees of freedom in both the patients

movement and the volumetric region they occupy. Based on

the assumption that the patient resides at rest within a limited

region and the occluding surface is covering the patient, this

region of interest is easy to identify and model as a continuous

enclosed volume as illustrated in Figure 8 (f). This is achieved

through the use of several assertions about the experimental

setup: the patient resides within the bounded region and is

supported by a rest surface, the occluding surface is supported

by the patients body and does not penetrate through the volume

of the body, the human body is contiguous, and the patient’s

face is visible and unobstructed. In this section we build

on these assumptions to formulate the three-stage process

of building the patient’s posture volume and generating the

associated volumetric model: (1) volume enclosure, (2) sphere

hierarchy generation, and (3) the generation of a voxel grid that

represents the thermal distribution of the patient’s posture.

A. Posture Volume Enclosure

To begin the process of imposing constraints on the possible

joint locations within the occluded region, we enclose the

volume between the recorded depth image and the known bed

surface. Since the enclosed volume is a direct function of the

occluded surface model provided by the point-cloud and the

bed surface, we assume that the contact surface of the bed can

be obtained by a simple planar model or through a preliminary

scan of the bed surface taken while patient is not present.

B. Volumetric Sphere Hierarchy

To model the internal volume of the patient behind an

occluded region, we introduce a simple and robust method

for populating the area using discrete unit spheres through a

methodology derived from simple sphere-packing. Generating
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this volume requires an enclosed region that is defined by the

point-cloud data provided by the imaging devices included in

the proposed prototype. From the enclosed region occupied by

the patient defined by the beds surface and the recorded depth

image, the volumetric reconstruction process used to define the

occluded volume is derived from the 3D grid-based sphere-

packing algorithm used to generate a spherical hierarchy.

This methodology is used as the basis of the volume

reconstruction algorithm due to two assertions of the cloud

that encapsulates volume of the patient: (1) the volume may

be concave and contain complex internal structures and (2)

the internal region may contain holes or regions that further

reduce the patients potential joint positions due to volumes

that are too small to occupy the associated joint.

Fig. 10. Two-dimensional variant of the volumetric reconstruction algorithm.
The image in (a) illustrates the hierarchy root and the propagation directions
and (b) illustrates the limitation of the propagation by the surrounding point-
cloud and associated thermal intensities of the depth points.

Sphere-packing is a simple algorithm that propagates unit

spheres through a hollow region until some boundary con-

ditions are met. This is based on three primary components

commonly defined for sphere-packing: (1) the start position

of the propagation, (2) the method of propagation, and (3) the

boundary conditions must be defined for each sphere added to

the volume. For (1), the starting position of the propagation

is defined as the center of mass of the patients head. From

our assertion that the patients head will always be uncovered,

we can easily segment and identify the patients head within

the thermal image due to the heat intensity of the patients

face. The method of propagation (2) is derived from a bread-

first search pattern. For the boundary conditions (3) of the

propagation, we consider two primary boundaries: the point-

cloud that encloses the region and regions that have very

limited thermal intensities. This limits the propagation of the

volume to regions that contribute to the patient’s posture. The

image in Figure 10 illustrates this thermal 2D sphere-packing

algorithm. For our three-dimensional skeletal posture data, the

root position resides within the head of the patient.

C. Thermal Extended Gaussian Images (TEGI)

Extended Gaussian Images (EGIs) represent a mapping of

surface normals of an object onto a unit sphere through a sim-

ple projection. This formulation provides an alternative form of

representing complex geometric structures using a simplified

form while maintaining the original geometric representation.

To reduce the resolution of the volumetric data provided by

the thermal-cloud, we introduce the use of Thermal Extended

Gaussian Images (TEGIs) to represent a projection of localized

thermal intensities from the recorded thermal images onto the

surfaces of the unit spheres within the sphere hierarchy.

TEGIs are introduced to establish a transfer function be-

tween the known recorded surface temperatures and the vol-

umetric data represented by the sphere hierarchy within the

occluded region. This function represents a conversion of

the 2D thermal data residing within the surface lattice to

a volumetric representation of the transferred heat and an

estimate of the source direction. This allows the thermal data

of the recorded surface point-cloud to be transfered to the

newly generated internal volume that represents the patients

potential posture constraints. Based on this model, TEGIs are

used to represent both thermal intensity and directionality of

the observed thermal distribution.

Each surface sphere within the hierarchy contains an TEGI

that is parametrized by two characteristic features based on the

on the sample points residing within the local neighborhood

(2r) of the sphere: (1) the thermal intensity t and (2) the

Euclidean distance d between the contributing point and the

sphere. This provides a parameterized distribution that models

the local heat distribution across the surface of the recorded

thermal cloud as a 2D Gaussian function TEGI(t, d):

TEGI(t, d) = αte

[
−x2/2(βd)

]
+
[
−y2/2(βd)

]
(1)

Where the parametrization of the standard Gaussian distribu-

tion is defined by the thermal contribution t and scaled by a

scalar thermal multiplier α provided by the thermal image. The

distribution of the function is then modified by modeling σ2 as

the Euclidean distance between the point d and the center of

the sphere with a distance scalar multiplier β where the value

for the scalar multiplier β is defined by the device distance to

the surface of the patient.

Fig. 12. Extended Gaussian Image (EGI) spherical mapping [15]. For each
thermal point within the recorded thermal point-cloud, the projection of the
point will produce a location on the unit sphere that will reside within a
bounded surface region. These surface regions are defined by the height and
width of the EGI map (b). The corresponding surface regions in (a) are
displayed in the two-dimensional representation in (b).

The primary requirement of generating a TEGI is a pro-

cedure for projecting and mapping thermal points from the

thermal cloud onto the surface of a unit sphere. To achieve

this, a discrete form of the unit sphere is divided into discrete

regions following the approach defined in [15] for automated

point-cloud alignment. Then for each point within the local

neighborhood, the point is projected onto the surface of the
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Fig. 11. Volumetric thermal model process overview. The image in (a) illustrates the raw thermal cloud, (b) illustrates the enclosed region of this cloud, (c)
illustrates the generated internal thermal distribution of the patient, and (d) provides the result of both the reconstruction and the thermal propagation through
the enclosed volume. The thermal distribution in (d) will then be provided to the training algorithm with an associated skeletal estimation.

sphere and then assigned a 2D region index within the TEGI.

This index will be used to identify the peak of the Gaussian

distribution that will be added to the discrete surface repre-

sentation of the sphere. Since the resolution of the Gaussian

is discretized on the surface of the sphere, we sample the

continuous parameterized Gaussian function at a fixed interval

and allow the distributions to wrap around the surface of the

sphere. The image in Figure 12 provides an illustration of how

points are projected to the surface of a unit sphere and then

used to generate the positions of the Gaussian distributions

within the surface image of the sphere.

The contribution of multiple points within the same local

neighborhood is accounted for through the addition of several

different Gaussian distributions to the surface of the sphere,

each with its own parameterization derived from its relative

position to the sphere and its thermal intensity. The resulting

TEGI is then defined as the sum of the contributions from all

local points within the defined search radius. This defines the

total thermal contribution of sphere S to the volume for the

set of points within the spheres local neighborhood N:

S(p) =
n∑

i=0

n∑

j=0

αpte
−x2

i /2(βd)+−y2
j/2(βd), ∀p ∈ N (2)

Geometrically, the contribution of each points thermal in-

tensity to the surface of the sphere also incorporates the

directionality of the thermal intensity of the point in the

direction of the sphere. This provides a rough estimate as to

the direction of the source of the thermal reading identified at

the surface point. While this approximation of the heat transfer

function does not provide an accurate model of the inverse heat

transfer problem, it provides an effective means for estimating

the inverse propagation of the heat measured at the recorded

depth-surface to define the thermal signature of the volume.

Fig. 13. Thermal Extended Gaussian Images for the distribution of heat due
to surrounding thermal points. The image in (a) represents the discrete TEGI
map of the sphere surface that contains the thermal contribution of two points,
(b) illustrates the TEGI in 3D space with the two contributing points, and (c)
provides a rendering of the TEGIs within the sphere hierarchy used to show
the thermal propagation from the surface scan.

These TEGIs are then evaluated for each sphere in the

spherical hierarchy that reside within the surface of the thermal

cloud. The resulting thermal intensity of each sphere is then

used as the seed for propagating the observed heat through the

patient’s posture volume. These thermal values are then used

generate a three-dimensional voxel model of the patients heat

distribution.

D. Thermal Voxel Grids

To integrate the thermal contribution of each TEGI within

the constructed sphere hierarchy, the grid-based nature of the

propagation algorithm used to generate the volume is used

to populate a scalar field of the thermal values into a voxel

grid. This fixed-dimension voxel grid provides the thermal

distribution of the internal volume of the patient used to

represent the thermal distribution of a unique posture. The

thermal distribution residing within the voxel grid is then used

to represent the patient’s posture as a 3D image that can be

classified based on a pre-trained set of postures. An example of

the resulting 3D image illustrating the patient’s posture within

the voxel grid is illustrated in Figure 14 (d).

VII. THERMAL SKELETAL VOLUMETRIC TRAINING

The underlying correlation between volumetric thermal dis-

tributions and skeletal joint positions used to formulate our

posture estimation is defined by two primary factors: (1)

the skeletal ground-truth of a patients posture and (2) the

thermal distribution of the patients volume within the occluded

region. Together, these two components form the training

and identification data used to estimate the occluded skeletal

posture of the patient within an occluded region.

Neural Network Structure. There are several types of

training methodologies and models that have been designed

for three-dimensional medical image classification. Of these

methods, Convolutional Neural Network (CNNs) [16] and

Deep Neural Networks (DNNs) [16] are most commonly

used methods for identifying complex structures within 3D

images. In the proposed method, we have selected a feed-

forward CNN-based network structure to handle the higher

dimensionality of the 3D thermal voxel grid we generated

within Section VI. This is due to the dense representation of

the patient’s thermal distribution rather than a feature-based

estimation which would better suit a DNN-based method.

Therefore we allow the CNN to generate features through
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Fig. 14. Skeletal posture estimation results for six standard sleeping postures. The first image in each sequence provides the ground-truth skeletal posture,
followed by the middle image that illustrates the thermal distribution used to obtain the trained skeletal posture rendered in the last image of each sequence.

sequential filters that identify thermal-specific classification

metrics. In our method we implement CNN with 4 fully-

connected layers with rectified linear units (ReLUs) which

obtain results faster than traditional tanh units [17]. Addi-

tionally, since there is no analytical method to determine the

optimal number of convolutional layers for a given application,

our network structure is determined empirically based on the

correct identification of posture states.

Training Model. We trained CNNs to detect 6 postures of the

patient based on our generated thermal voxel grid images. The

classification label (one of six postures) is assigned for each

thermal distribution. 60 thermal voxel grid images are used

for training while 180 other distributions have been used for

testing. We avoid overfitting through two common methods:

First, we apply Dropout to randomly drop units (along with

their connections) from the neural network during training

[18], which prevents neurons from co-adapting. Second, cross-

correlation is applied to stop the training when the cross-

validation error starts to increase, leading to our termination

condition. Additional convolutional layers generally yield bet-

ter performance but as the performance gain is reduced, we

see diminishing returns in the training process. Therefore the

number of connected layers required to avoid overfitting is

commonly defined as two as referred in [16].

VIII. EXPERIMENTAL RESULTS

Driving the experimental results of the proposed volumetric

model for skeletal posture estimation, we identified several

common sleep postures that exhibit a wide variety of skeletal

joint positions that form both partial and complete posture

estimates due to the visual occlusions introduced by the use

of a standard blanket. Based on these common postures,

our objective is to collect the skeletal ground-truth, generate

the associated thermal distribution, and then correlate this

distribution with the recorded skeletal joint positions for the

patient’s training set. From the generated training set, we can

then estimate the patient’s approximate skeletal posture solely

based on their current thermal distribution.

Standard Posture Estimation. The primary qualitative metric

for both identifying a patient’s posture and associated skeletal

structure in occluded regions is based on the ability to recog-

nize the posture and the accuracy of the generated skeletal

joints used to represent the patient. In these experimental

results, we perform a quantitative analysis for the accuracy

of the of this method with respect to identifying the correct

posture based on the generated thermal distribution. The image

sequences in Figure 14 (a-f) illustrate six common postures

along with their associated ground-truth skeletal measurements

as the first image within each sequence. The posture sequence

for these experiments is defined as: (a) face up + arms at the

side, (b) face up + hands on chest, (c) face left + straight arms,

(d) face left + bent arms, (e) face right + straight arms, and (f)

face right + bent arms. The second image within each sequence

provides the rendered thermal distribution of the patient based

on the voxel data generated from the volumetric model. This

data is then used to identify the associated skeletal structure,

as presented in the last image of each sequence.

Individualized Posture Estimation. As the primary quantita-

tive metric of the volumetric distribution method, we measure

the accuracy of the classification of the patients posture based

on our six standard postures. For each posture, we collect

the ground-truth and 40 variants (with subtle movements)

to provide a sufficient training set applicable to the limited

posture set. This results in 240 data sets in total, with 60 used

for training and 180 data sets utilized for testing. The confu-

sion matrix illustrated in Figure 15 shows the performance of

the classification rate for the trained system, resulting in an

average ∼94.45% classification accuracy.
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Fig. 15. Individualized confusion matrix for the six identified postures. The
correlation between the postures (as shown in Figure 14), illustrates a ≈ 90%
classification accuracy. Similar postures incur misclassification due to changes
in the patient’s joint locations (such as the wrists or elbows).

Cross-patient Posture Estimation. Individual body structure

plays a significant role within posture estimation algorithms

that do not use features, however based on the generalized

volumetric model of the body used to classify the identified

skeletal posture, this method can also be applied across

several patients with similar body shapes and sizes, obtaining

reasonable results. The confusion matrix in Figure 16 shows

the classification results of the postures provided by three

individuals based on a pre-trained posture set formed from

a single individual, with avg. accuracy ∼90.62%.
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Fig. 16. Confusion matrix illustrating the accuracy of the posture estimation
tested against a set of 3 patients that did not contribute to the training of the
CNN used to perform the classification.

Impact of Training Network Structure. The introduction of

additional layers within the CNN improves the performance of

classification in both experiments, but we still observe dimin-

ishing returns. We tested the CNN from 1 to 4 convolutional

layers and illustrate the corresponding classification accuracies

of the individualized experiment within Table I.

TABLE I
CNN POSTURE CLASSIFICATION PERFORMANCE

# of convolutional layers 1 2 3 4
Accuracy (%) 76.67 88.33 91.67 94.45
# of weights (millions) 1.2 2 2.8 3.11
Training time (minutes) 4.5 8.5 15 20.5

Evaluation and Discussion. There are three primary con-

siderations employed within the design of these results that

are addressed within this study: (1) the trained set is based

on a discrete enumeration of skeletal postures, limiting the

skeletal movement resolution, (2) the entire voxel volume is

utilized without features, so large variance in body-type re-

duces accuracy, and (3) skeletal refinement algorithms have not

been employed, thus the resulting skeletal movement between

enumerated training postures is discrete. These issues can be

properly addressed through providing an extensive training set

of postures from numerous patients, feature localization and

extraction, and a joint refinement algorithm that compensates

for the disparity between the trained skeletal structure and

the patient’s actual joint positions, all of which are potential

future extensions of this method. The implemented volumetric

reconstruction algorithm also provides a means of accurately

modeling and visualizing the volumetric posture of a patient

within an occluded region. This allows the this method to be

applied to numerous additional medical imaging applications

such as patient monitoring, gait analysis, and thermal distribu-

tion modeling for studies with similar occlusion constraints.

IX. CONCLUSION

In this work we have introduced a novel approach for

integrating thermal and depth imaging to form a volumetric

representation of a patient’s posture to provide occluded

skeletal joint estimates for trained sleeping postures. By ex-

tending this approach to define a patient’s unique thermal

distribution, we have introduced a new method for correlating

a patient’s unique heat signature with our motion-capture

inspired ground-truth estimate of the patient’s skeletal posture

for generating occluded joint positions, illustrated through

the application to six predefined postures with an average

classification accuracy of ∼94.45% for an individual and an

accuracy of ∼90.62% for untrained patients.

REFERENCES

[1] N. Mohsin et al., “Signal processing techniques for natural sleep posture
estimation using depth data,” in 2016 IEEE IEMCON, Oct 2016, pp. 1–8.

[2] J. Shotton et al., “Real-time Human Pose Recognition in Parts from
Single Depth Images,” Commun. ACM, pp. 116–124, 2013.

[3] M. Ye et al., “Accurate 3D pose estimation from a single depth image,”
in IEEE ICCV, 2011, pp. 731–738.

[4] J. Shotton et al., “Efficient Human Pose Estimation from Single Depth
Images,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 2821–2840, 2013.

[5] S. Transue et al., “Real-time tidal volume estimation using iso-surface
reconstruction,” in ACM/IEEE CHASE 2016, 2016, pp. 209–218.

[6] P. N. et al., “Continuous and fine-grained breathing volume monitoring
from afar using wireless signals,” in IEEE INFOCOM’16, pp. 1–9.

[7] ——, “WiKiSpiro: Non-contact Respiration Volume Monitoring During
Sleep,” ser. ACM S3, 2016, pp. 27–29.

[8] ——, “Continuous and Fine-grained Respiration Volume Monitoring
Using Continuous Wave Radar,” in ACM MobiCom, 2015, pp. 266–268.

[9] F. Achilles et al., “Patient MoCap: Human Pose Estimation Under
Blanket Occlusion for Hospital Monitoring Applications,” in MICCAI.
Springer, Cham, 2016, pp. 491–499.

[10] X. Liu et al., “Toward study of features associated with natural sleep
posture using a depth sensor,” in IEEE CCECE, 2016, pp. 1–6.

[11] S. Iwasawa et al., “Real-time human posture estimation using monocular
thermal images,” in IEEE FG, 1998, pp. 492–497.

[12] I. Riaz et al., “Human detection by using centrist features for thermal
images,” in WSCG. Citeseer, 2013.

[13] K. Yasuda et al., “Thermo-key: human region segmentation from video,”
IEEE Computer Graphics and Applications, pp. 26–30, 2004.

[14] W. Wang et al., “Improved human detection and classification in thermal
images,” in IEEE ICIP, 2010, pp. 2313–2316.

[15] A. Makadia et al., “Fully Automatic Registration of 3d Point Clouds,”
in IEEE CVPR, 2006, pp. 1297–1304.

[16] A. Krizhevsky. et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012, pp. 1097–1105.

[17] N. D. Lane et al., “DeepEar: Robust Smartphone Audio Sensing in
Unconstrained Acoustic Environments Using Deep Learning,” in ACM
Ubicomp, 2015, pp. 283–294.

[18] N. Srivastava et al., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” J. Mach. Learn. Res., pp. 1929–1958, 2014.

176176


