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Abstract: Recently, free-form deformation (FFD)-based simulation has received a lot of attention to achieve real-time animation
of complex objects, and many researches have improved the accuracy of modelling complex material property. Previously, a free-
form deformation axis aligned bounding box (FFD AABB) was proposed to approximate the FFD-embedded surfaces. Using
FFD AABB, an efficient update of bounding box is achieved with balancing between accuracy and computational cost. The
authors extended the FFD AABB with a more conservative collision handling method between FFD AABBs to deal with the
cases that the nodes on one side of FFD AABB are out-of-plane. In addition, the authors adopted a broad-phase culling
algorithm to cope efficiently with both self-collision and inter-collision using parallel spatial hashing.
1 Introduction

Free-form deformation (FFD) is a flexible and intuitive
modelling tool to manipulate and deform objects for
designing and styling of three-dimensional objects.
Primarily, FFD has not been physics-based [1–5] but has
been combined with physically based simulation to simplify
modelling complex objects for physically based simulation
[6, 7]. Many exciting animations and simulations [8–11]
became viable by combining the FFD control grid (or an
FFD grid) for deformation modelling with the embedded
surface for rendering.

Unfortunately, no efficient collision handling techniques
tailored to the FFD-embedded surface have been proposed
to exercise the full potential of the fast FFD-based
simulation. For an FFD-based dynamic simulation, collision
between FFD-based objects can be performed over the FFD
grids (physical model). Since FFD grids do not
approximate the embedded surfaces accurately, the FFD-
based collision handling produces severe artefacts such as
floating and bouncing-off without making a surface-to-
surface contact. Alternatively, embedded surfaces can be
used for collision handling of the FFD-based objects
directly. Collision handling based on the embedded surface
can give accurate interactions between FFD-based objects.
However, this is impractical for most applications that
require an interactive simulation rate, because deformable
objects require frequent updates of their position, which
negates the purpose of using the FFD altogether.

This paper proposes a new efficient and comprehensive
collision handling technique for FFD-based objects with a
plausible accuracy. Our approach is based on an axis-
aligned bounding box updated by FFD (FFD AABB) along
with the embedded surface at each time step. An FFD
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AABB accurately approximates the embedded surface for
FFD-based objects, and the computational cost of
maintaining FFD AABB is very low. The cost for updating
the FFD AABBs of FFD-based objects is negligible,
because the linear FFD requires only several multiplications
and additions. In addition, since our method makes use of a
spatial subdivision method that requires no tree structure
and no additional update operations, it alleviates the
computational cost and memory requirement. Collisions are
corrected using a hybrid method combining an impulse-
based method with a geometry-based method.

Our method for collision detection consists of two phases:
the broad phase and the narrow phase. In the broad phase, two
possible FFD AABB pairs are found using a fast spatial
hashing approach. In the narrow phase, two FFD AABBs
are checked to determine the lower level collision situation.
During the collision resolution process, collisions between
FFD AABBs are accurately handled by a combination of a
geometric method and an impulse-based method. Our
examples show the robustness and usefulness of our
methods for various applications with large deformations.

2 Related work

Our work is based on FFD-based simulation and collision
detection and resolution for deformable objects. An FFD-
based simulation has been achieved successfully by mass–
spring systems [6], the finite element method (FEM) [9, 10]
and shape-matching deformation [11] for skeleton-driven
simulations and large deformations. Most approaches used
the linear FFD with a regular FFD grid and produced
visually pleasing results [12].

The collision detection and resolution for deformable
objects has been studied rigorously and several noteworthy
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surveys have been proposed. Lin and Gottschalk [13]
categorised collision detection methods according to the
type of collision surfaces. Jimenez et al. [14] provided a
comprehensive description according to the type of
approach. Teschner et al. [15] introduced and analysed
three different approaches for deformable objects. Recently,
deformation-bounded approaches have been proposed for
reduced coordinate deformation [16] and for matrix-based
deformation (meshless deformation) [17]. Unlike general
bounding volumes such as sphere trees [18], AABBs [19]
and k-DOPs [20], deformation-bounded approaches can
reduce the cost of updating the bounding volumes by
applying deformation to the bounding volume directly
without any recalculations from the mesh.

However, it is not trivial to directly employ these
approaches for FFD-based simulation, because FFD-based
deformation cannot be represented by a matrix or in
reduced coordinates. In addition, bounding spheres can
easily overestimate an FFD-embedded surface when the
radius for all the primitives is not updated during the
deformation. Previously, we proposed an efficient bounding
box [21] updating to balance the computational cost with
the accuracy of collision handling without self-collision
handling. Our method improved the performance of
collision detection using a spatial hashing and the
robustness of collision handling with a conservative
overlapping test between bounding boxes.

3 FFD-based simulation

In this section, FFD-based simulation is briefly explained.
Physical modelling is separated from rendering in FFD-
based simulation. The FFD control grid is generated for the
geometric model (embedded surface) automatically, and the
control nodes in the grid are deformed by physically based
simulation techniques such as a mass–spring system, FEM
and meshless deformation. The local coordinates (s, t, u) of
all nodes among the embedded surface are calculated before
applying deformation by (1) (for the case of the regular
control grid)

s = (x − x0), t = (y − y0), u = (z − z0) (1)

In (1), C0 ¼ (x0, y0, z0) is the origin of the FFD local
coordinate system and p ¼ (x, y, z) is the position of the
node in a deformable object.

While simulating the FFD grid by a physically based
simulation technique in Fig. 1, the deformation of FFD
control nodes is applied to the embedded surface by
evaluating (2) at the local coordinates (s, t, u). Bj is the

Fig. 1 FFD in a regular grid cell for a node of the embedded
surface: the position of the node p is updated according to FFD
and the result position is p′
342
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linear Bernstein function and C′
j is the jth control node of

the cell

p′ =
∑7

j=0

Bj(s)Bj(t)Bj(u)C′
j (2)

4 Building FFD AABB

An AABB consists of six boundary float variables (maximum
x, minimum x, maximum y, minimum y, maximum z and
minimum z) that are updated at each time step by traversing
the primitives in the AABB. In general, the cost of an
AABB tree update cost is at least O(N ), where N is the
number of primitives. Unlike AABB, FFD AABB consists
of a set of eight boundary nodes (BNs) that have local
coordinates (s, t, u) and global coordinates x, y and z. Fig. 2
illustrates the FFD AABB building process. After the FFD
control grid is built for the input mesh, the maximum and
minimum for each axis are calculated and the boundary
nodes of FFD AABB are located at the eight corners. The
local coordinates of the boundary nodes are calculated by
(1). In Fig. 2, there are eight BNs of FFD AABB.

The BNs are updated at each time step using the FFD
formulation (2) along with the embedded surface nodes.
Since the trilinear interpolation is simple and fast, the FFD
AABB can be updated quickly and independently from the
complexity of the mesh. The FFD AABB contains the
embedded surfaces of an FFD cell while the cell undergoes
dynamic deformation. Because FFD involves scaling and
shearing frequently, bounding spheres do not approximate
the FFD-embedded surfaces well, but FFD AABB
represents the embedded surfaces efficiently because FFD
AABB moves along with embedded meshes. The cost of an
FFD AABB update is only evaluating (2) eight times for
each FFD cell. Fig. 3 shows a relationship between the FFD
grid, FFD AABB and the embedded surfaces. The FFD
AABB approximates the embedded surface without
overestimation of the surface under large deformation.

5 Collision detection and resolution
overview

Our collision detection method consists of two phases. In the
first phase, spatial hashing is applied to determine the
potential collision pairs (PCPs) of box bounding nodes. In
the second phase, the bounding nodes in the same bucket in
the hash table undergo collision checking. In general,
collision detection is separated from collision response.
Collision detection returns the collision result such as a list
of the collided primitive pairs (e.g. bounding sphere/
bounding sphere). Then the collision response is calculated
and applied to the pair to settle the collision situation. In
the collision detection process, one of the most time-
consuming steps is removing duplicated collision results in
order to avoid applying multiple collision corrections.

The key idea of our method is to apply the collision
correction and update the boxes of the corrected cells at the
collision detection time. Instead of returning a list of PCPs
after performing collision detection, the collision response
is directly applied and the state of the boxes is updated.
Removing redundant pairs from the list of PCPs is
expensive when the number of collisions is relatively large.
To remove the repetition of collision detection and
resolution for the same pair, collision-involved boxes are
IET Image Process., 2011, Vol. 5, Iss. 4, pp. 341–348
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Fig. 2 FFD AABB building process: after building the FFD grid for the input mesh (embedded surface), the AABB is calculated for each FFD
cell, as well as the FFD local coordinates of the boundary nodes
updated after the collision correction has been applied. This
guarantees that the state of the boxes is synchronised
throughout the whole collision detection process. The
overview of our algorithm is described in Fig. 4.

6 Collision detection

6.1 Spatial hashing of FFD AABB

In the broad phase of collision detection, bounding volume
hierarchy or spatial subdivision can be used. However,
building and updating the tree of FFD AABB can be costly,
since all nodes in the tree must be traversed. Thus we chose
spatial subdivision, which is similar to the optimised spatial
hashing [22] that requires no modification for self-collision
and inter-collision. Unlike traditional spatial subdivision
[23], spatial hashing enables unlimited 3D cells to be
mapped in a limited data structure efficiently. In our
method, the AABBs are used for spatial hashing. After
performing voxelisation, the PCPs are determined. For
IET Image Process., 2011, Vol. 5, Iss. 4, pp. 341–348
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optimal spatial hashing performance, the spatial hashing
cell size should be close to the largest length of the edges
in optimal hashing. For our case, the FFD cell size is
appropriate for the spatial hashing cell size because the
FFD cell is the spatial hashing primitive. In our example,
we used 4000 for the hash table size because this gave
optimal performance. We found spatial hashing time to be
constant at 4 ms throughout the alphabet simulation (see the
Result section) whereas the number of collisions increases
under the same number of objects.

6.2 FFD AABB/node collision detection

During the narrow phase collision detection, the boxes of PCPs
are checked, and these boxes undergo various deformations
such as shearing and scaling. It becomes non-trivial to
determine their collision status. Our method defines the
collision regions of the boxes by checking six planes.

If a node is contained within those six planes, the node is
inside the current box. The plane equations for the six
Fig. 3 FFD AABB update: the deformation of the FFD grid is applied to BNs directly
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surfaces of any box are calculated as follows: First, the plane
normal (N ) is calculated by the cross product of two vectors
between diagonal boundary nodes (3). Fig. 5 illustrates how
to calculate the plane equations for the surface consists of
BN2, BN3, BN6 and BN7. The four boundary nodes
generate two planes to calculate the plane normal

N = (BN6 − BN3) × (BN7 − BN2) (3)

The collision region surrounded by the six planes contains all
the boundary nodes. However, there are two possible planes
for collision testing and one specific plane should be
selected. Fig. 6 illustrates the two different cases of the
plane set by one specific plane (green planes). Thus, the
plane equation is set by testing (4). If (4) is true, the plane
equation is set by BN2 (5), otherwise the plane equation is
set by BN6 (6), where P is the position vector of a node to

Fig. 4 Collision detection and resolution

Fig. 5 Plane for collision check is set to include all involved
boundary nodes
344
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be collision checked

N · (BN2 − BN6) , 0 (4)

N · (P − BN2) = 0 (5)

N · (P − BN6) = 0 (6)

The collision test between a box and a node is performed by
inserting the position of the node into the six plane equations.
If all values for the plane equation are negative, the node is in
the box.

7 Collision resolution

When a collision between a box and a node is found, the
collision response is applied to the colliding FFD grids,
which have physical property weights and velocities for the
FFD AABBs. The collision response can be applied on
three levels: force, velocity and position. In order to
guarantee a collision-free state, an impulse-based method on
velocity and geometric correction are applied to positions.

7.1 Impulse-based response

Let A and B be the FFD simulation grids and assume that a
BN of B is inside of A. Firstly the collision direction is
calculated by (7)

R = rN (7)

where r ¼ min(d1, d2, d3, d4, d5, d6,) and d1 · · · d6 are the
penetration depths for six surface of the bounding box and
N is the normal vector of the plane with the minimum
penetration depth

V ′
i[A = (1 − a)(V i[A · (−R))(−R)

+ (1 − b)(V i[A − (V i[A · (−R))(−R))

V ′
i[B = (1 − a)(V i[B · R)R

+ (1 − b)(V i[B − (V i[B · R)R)

(8)

For collision response, we use an impulse-based collision
correction and a geometric correction similar to the methods
explained in [24, 25]. The velocity of the cell node i (Vi[A,
Vi[B) of A and B is corrected according to collision
response vector (R). The response velocity (Vi[A, Vi[B) is
calculated using (7) and applied to the cell nodes when the
relative velocity between A and B is negative (getting
closer). a is a damping coefficient and b is a friction
coefficient to determine the collision characteristics.

Fig. 6 Two case of planes where the plane for the four boundary
nodes (dots) of a box (FFD AABB) is set by a fixed position (one of
two nodes in the middle)

In the left case, the boundary nodes are above the plane, but all boundary
nodes must be below the plane
IET Image Process., 2011, Vol. 5, Iss. 4, pp. 341–348
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7.2 Geometric correction for embedded surface

CA = r

2
R

CB = −CA

(9)

Geometric correction (CA and CB) is half of the minimum

Table 1 Summary of experimental results

Simulation Number of

triangles

Number of FFD

grid cells

Collision handling

time, ms

teapots 12 640 1204 1.7

alphabets 2 265 744 11 661 279

happy

Buddha

293 000 988 0.3

bunnies 347 250 6900 0.5
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penetration depth (8) of six surfaces in the opposite
direction because each cell is assumed to have the same
mass and stiffness. To correct an embedded surface, the
correction is applied to the nodes of the cells (A and B)
matching the penetrated box. After applying geometric
correction, the box must be updated, and the next collision
correction will be calculated correctly.

8 Results

We checked the surface proximity accuracy for the FFD
AABB technique as well as the performance of the overall
collision detection and resolution through simulations of
many different shapes of objects using meshless deformation
and a mass–spring system. Table 1 shows the experimental
results of our method. The example simulations were run on
a PC with a Pentium D 3.0 GHz CPU and 2 GB of RAM.
Fig. 7 Stacking two teapots

a Snapshots of collision handling with only an FFD grid showing visual artefacts
b Snapshots of collision handling with the proposed FFD AABB showing close proximity
The surface estimation using the FFD AABB is more accurate than the FFD grid estimation. The teapots are staked without any visual artefacts such as floating
between two teapots and a gap between floor and the bottom teapot in our method
Fig. 8 Alphabet letters simulation: the snapshots of 1014 alphabet letters simulation at simulation frame number 300 (top left), 810 (top
middle), 1680 (top right), 2640 (bottom left), 3640 (bottom middle) and 4800 (bottom right)
345
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8.1 Approximation for the embedded surface

To verify whether our method provides close proximity of the
embedded surface between complex curved and non-convex
surfaces, we simulated collision and contact between
teapots. Each teapot in Fig. 7 has 3644 nodes, 6320 triangles
and 602 FFD grid cells. The FFD AABBs deform with the

FFD grid and contain the embedded surface mesh more
tightly than the FFD grid. As shown in Fig. 7, the proximity
of FFD grid for the embedded surface is too rough. The
result of collision detection by FFD grid shows an apparent
large gap between the embedded surface meshes and
between the embedded surface mesh and the floor. On the
other hand, the proximity between contact surfaces is tightly

Fig. 9 Different spring coefficients are used to simulate happy Buddha and five bunny models and the simulations produce large deformations
with complex self-collisions

Soft springs are used for a and b and hard springs for c
a Snapshots to happy Buddha simulation with only self-collisions
b Snapshots of five bunny simulation using soft spring with a complex collision situation including self-collisions and inter-collisions
c Snapshots of five bunny simulation using hard spring with a less complex collision situation than b
346 IET Image Process., 2011, Vol. 5, Iss. 4, pp. 341–348
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Fig. 10 Change of collision handling time in millisecond for the happy Buddha simulation
maintained with our method and does not show any floating
artefacts. Both techniques show combined collision detection
and response times of 1.7 ms, so there is little or no
performance difference. In this example, only one node
(centre-of-mass) is added to the FFD AABB because it is
sufficient to provide reasonably plausible results. Having
more nodes could possibly improve the precise contact at a
slight extra computational cost.

8.2 Massive collisions

To verify whether our method can handle massive collisions
using spatial hashing, we simulated 1014 alphabet letters.
The deforming shapes of alphabets are numerous and the
FFD AABB technique efficiently holds the embedded
objects under severe deformations and high velocities. Each
alphabet model is dropped as a group towards a confined
area to create a large number of sustained collisions and
contacts. To create various challenging simulation situations,
the initial conditions for velocity and orientation or torque
for the objects are randomly generated. Fig. 9 shows a series
of snapshots of the simulation, time-stamped as it progresses.
The number of typical FFD grids for each alphabet model is
between 8 and 16 depending on the shape and topology of
the model. The number of deformable alphabet objects in
Fig. 9 is 1014 and the number of triangles is roughly three
millions in the scene. Initially the number of collision is
relatively small, but as letters piles up the total number of
collision/contact grows accordingly. The processing time per
collision/response is kept relatively constant. Our method
scales up reasonably as the collision handling instances are
increased, and the performance is shown in Fig. 8. The
average number of nodes in the embedded surface mesh of
alphabets is 1118 ranging from 766 to 1434. The average
number of triangles is 2234 ranging from 1528 to 2872. The
average collision handling time throughout the whole
simulation is 279 ms including the FFD AABB updates,
collision detection and resolution.

8.3 Self-collision

To prove the accuracy of our method in handling complex
models using conservative approach, several relatively large
deformations with self-collisions are simulated.

Happy Buddha (Fig. 9a): a Stanford happy Buddha with
293 000 triangles is simulated with 988 FFD grid cells. The
model is hollow and has no inner structure to maintain its
volumetric shape. The collision handling time is 0.3 ms in
IET Image Process., 2011, Vol. 5, Iss. 4, pp. 341–348
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average and the detailed computational time is shown in
Fig. 10. If all the bounding boxes for 293 000 triangles are
updated, the updating process will take more than one
second. Self-collision is handled by the same scheme for
object/object collisions.

Five bunnies: five bunnies are simulated with different
spring coefficients. A Stanford bunny model with 69 450
triangles is modelled by 1380 FFD grid cells and mass–
spring underlying structures are used to model a deformable
bunny. Five bunnies collide with each other while falling to
the floor. Figs. 9b and c illustrate a close contact between
five bunnies under large deformations with self-collisions.
The computing time for collision detection and resolution
was 0.5 ms per frame for this simulation.

9 Conclusion and analysis

We have extended the concept of FFD AABB to a more
robust collision handling for using conservative collision
detection and to a more efficient broad-phase culling using
spatial hashing. Our technique has few limitations. Our
method is well suitable for real-time applications that
require simulating complex mesh objects, but it does not
guarantee the high accuracy of collision resolution. For
accurate collision detection and resolution, FFD AABB can
be used as an efficient broad-phase method. Since our
spatial hashing method can be benefited by parallel
computing using multi-cores or GPUs, we can parallelise
our method in the future work.
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