
KSII The 9th International Conference on Internet (ICONI) 2017 Symposium.

Copyright ⓒ 2017 KSII 213

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(Ministry of Science, ICT & Future Planning) (No. 2017R1A2B1005207).

Comparison in Performance of Parallel
Deformable Object Simulation between

OpenGL and Unity

Min-Hyung Choi
1
, Min Sang Kim

2
, Nak-Jun Sung

2
, Yoo-Joo Choi

3
 and Min Hong

4

1
Department of Computer Science and Engineering, University of Colorado Denver

Colorado, USA
2
Department of Computer Science, Soonchunhyang University

Asan, South Korea
3
Deparment of Newmedia, Seoul Media Institute of Technology

Seoul, South Korea
4
Deparment of Computer Software Engineering, Soonchunhyang University

Asan, South Korea

[e-mail: Min.Choi@ucdenver.edu, ben399399@gmail.com, njsung1217@gmail.com,

yjchoi@smit.ac.kr, mhong@sch.ac.kr]

*Corresponding author: Min Hong

Abstract

Recently, as the performance of mobile processors has increased, it has become possible to run complex

computational tasks such as deformable object simulation, which were only possible to simulate for PC

in past. Due to these changes, digital contents, including computer graphics, need to be driven not only

on smart phones or PCs, but also on a variety of portable device platforms. In this paper, we provided a

performance comparison between Unity which is the market-dominant multi-platform digital content

production tool, and OpenGL which is cross-platform application programming interface for rendering

computer graphics with real-time deformable object simulation using GPU. We believe that this paper

provides a guideline for game or smartphone application developers to decide better platforms for

creating digital contents with complex deformable object simulation in various situations.

Keywords: Unity, OpenGL, Performance Comparison, Deformable Object Simulation, Multiplatform

1. Introduction

As the performance of mobile processors on

smart phones and tablets and other handheld

devices has improved, it is possible to run more

computationally heavy cost programs on

smartphones that have been only able to be

performed on computers [1]. Because of these

changes, digital contents produced using

computer graphics require that they should be

run on smart phone, PC, as well as various

portable device platforms. One way to create

content with complex graphics operations on a

variety of platforms is to use a digital content

creation tool that supports multiple platforms,

such as Unity, or to write code directly using the

C ++ language, the OpenGL API, and the GLSL

language. Since these contents require many

computer operations, it is necessary to perform

operations that can be processed in parallel using

the GPU in order to compute them in real time.

214 Min Sang Kim et al.: Comparison in Performance of Deformable Object Simulation between OpenGL and Unity

In this paper, we propose a better method to

perform complicated computation using GPU on

various platforms in real-time by comparing

mass-spring based deformable simulation which

requires complex computation in OpenGL and

Unity environment.

2. Deformable Object Simulation

In this paper, we used physically-based

deformable object simulations to compare the

performance of OpenGL and Unity. The

real-time deformable object simulation is one of

common computational simulations usually for

physics or medical areas, to represent deforming

objects interacting with external forces such as

wind, gravity, and force inputs from users [2, 3].

Simulating deforming objects in precise ways as

finite element method (FEM) requires a really

expensive computational cost which is not able

to present in real-time [4]. Thus, in order to

present deformable simulation in real-time, we

used the simple mass-spring system to

implement deformable objects.

3. Implementation of Parallel Object
Simulation in Unity

3.1 Construction of Compute Buffer

The proposed deformable simulation, GPU

calculation with compute shader was used for

updating information for each edges and nodes.

Compute shader is a program that runs on a

graphics card, outside of the normal rendering

pipeline [5]. Compute shaders enable to perform

general-purpose GPU (GPGPU) computing,

solving problems which can be parallelized

much more efficiently than handling with a

single CPU. Compute shaders in Unity are

written in High-Level Shader Language (HLSL)

and OpenGL uses OpenGL Shader Language

(GLSL) [6].

In order to read or write data such as nodes of

mass position from GPU in Unity, a compute

buffer is needed [7]. Compute buffers carry data

across compute shaders and rendering pipeline.

Table 1 shows the compute buffers used in the

proposed deformable simulation.

Table. 1. Information of compute buffers

Name Type Size

nodePositionData float4
Number of

nodes

nodeVelocityData float4
Number of

nodes

springData

Spring

(4 * int ,

float)

6 * amounts of

tetrahedrones

forceData float array

Number of the

maximum

adjacent mass

point among

them

3.2 Scripts and Shaders in Unity

Scripts used for deformable object simulation in

Unity are written in C# language. These scripts

are used for invoking compute shaders and

rendering shaders. The computing script can be

divided with two parts. At the preprocessing step,

script parses the data files exported from TetGen.

After parsing the data, script computes the

maximum number of the adjacent mass points

among them, which is for generating force buffer.

After these steps, script creates compute buffers

and passes the parsed data. After preprocessing

step is done, computing script passes compute

buffer to rendering script for render deformable

objects. We rendered computed deformable

objects with wireframe rendering to visualize

springs inside the deforming objects.

4. Experiment Results

Table 2 shows the deformable objects were used

to compare the performance of each platforms.

The sizes of models were varied for simulating

various conditions.

Table 2. Information of models for experimental tests

Model Nodes Faces Tet. Springs

Sphere

732 7,926 3,834 23,004

Alphabet L

1,642 2,380 6,061 36,366

The 9th International Conference on Internet (ICONI) 2017 Symposium, December 2017 215

Alphabet A

2,320 3,724 7,867 47,202

Each simulation was performed 20 times and

performances of experimental tests were

measured by averaging the elapsed time of 200

frames. Table 3 is the measured elapsed time per

frame and frames per seconds for simulation by

each platforms and models.

Table 3. The experimental results with elapsed time

per frames and frame per second for each platform and

models

Models Platform
Elapsed

time(ms)

Frames per

second

Sphere
Unity 1.610 621.12

OpenGL 0.161 6,207.36

Alphabet

L

Unity 2.405 415.75

OpenGL 0.179 5,583.94

Alphabet

A

Unity 3.000 333.31

OpenGL 0.200 4,990.97

The result shows that simulation by pure

OpenGL and GLSL are 12.79 times faster than

implementation with Unity.

5. Discussion about Performance

To clearly explain these huge gaps of

performance difference between OpenGL and

Unity, we analyzed the processes simulation

using Unity with the Unity profiler. Since Unity

is mainly using for creating gaming, additional

processes such as GUI updates or

AudioManagers were running on background.

However, the simulation implemented on

OpenGL doesn't require those features,

simulation performed on Unity platform can be

much slower than simulation performed on pure

OpenGL.

6. Conclusion

In this paper, we provided the performance

comparison between OpenGL and Unity

platform with complex deformable object

simulations. Both environments are widely used

in industries for creating graphical digital

contents for targeting multi-platforms. The result

of our experiment shows that pure OpenGL and

shaders written in GLSL were around 12 times

faster than performed in Unity since Unity is not

just computing simulations but also providing

convenient development environment for users.

These results may help a decision for choosing

better platforms for digital contents containing

complex math calculations also targeting devices

with various performance.

References

[1] Anand Lal Shimpi, "The ARM Diaries, Part

2: Understanding the Cortex A12",

[INTERNET]https://www.anandtech.com/s

how/7126/the-arm-diaries-part-2-understan

ding-the-cortex-a12, ANANDTECH, 2013

[2] Meier, U., O. López, C. Monserrat, M. C.

Juan, and M. Alcañiz, “Real-Time

Deformable Models for Surgery

Simulation: A Survey.”, Computer Methods

and Programs in Biomedicine, 2005

[3] Servin, Martin, Claude Lacoursière, N

Melin, C Lacoursiere, and N Melin.

“Interactive Simulation of Elastic

Deformable Materials”, Proceedings of

SIGRAD Conference, no. December: 22–32,

2006.

[4] Hammer, Peter E., et al. “Mass-spring vs.

finite element models of anisotropic heart

valves: speed and accuracy,” In: ASME

2010 Summer Bioengineering Conference.

American Society of Mechanical Engineers,

p. 643-644, 2010.

[5] Shreiner, Dave, et al. “OpenGL

programming guide: The Official guide to

learning OpenGL, version 4.3.”

Addison-Wesley, 2013.

[6] Unity Documentation “Compute Shader”,

[INTERNET]

https://docs.unity3d.com/Manual/Compute

Shaders.html

[7] Unity Documentation “Compute Buffer”,

[INTERNET]

https://docs.unity3d.com/ScriptReference/

ComputeBuffer.html

