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 Abstract - Stable and effective enforcement of hard 
constraints is one of the crucial components in controlling 
physics-based dynamic simulation systems. The conventional 
explicit Baumgarte constraint stabilization confines the time 
step to be within a stability limit and requires users to pick 
problem-dependent coefficients to achieve fast convergence or 
to prevent oscillations. The recently proposed post-stabilization 
method has shown a successful constraint drift reduction but it 
does not guarantee the physically correct behavior of motion 
and requires additional computational cost to decrease the 
constraint errors. This paper presents our new implicit 
constraint enforcement technique that is stable over large time 
steps and does not require problem dependent stabilization 
parameters. This new implicit constraint enforcement method 
uses the future time step to estimate the correct magnitude of 
the constraint forces, resulting in better stability over bigger 
time steps. More importantly, the proposed method generates 
physically conforming constraint forces while minimizing the 
constraint drifts, resulting in physically correct motion. Its 
asymptotic computational complexity is same as the explicit 
Baumgarte method. It can be easily integrated into various 
constrained dynamic systems including rigid body or 
deformable structure applications. This paper describes a 
formulation of implicit constraint enforcement and an 
accumulated constraint error and dynamic behavior analysis 
for comparison with existing methods.  
 
 Index Terms – constraint, constraint drift reduction, implicit 
constraint, dynamic simulation, physically-based modeling    
 
 

I.  INTRODUCTION 

 While unconstrained dynamic simulation has made big 
strides over the past decade, controlling the behavior of 
dynamic simulation in a stable and effective manner, both in 
intuitively defining and accurately enforcing the control 
terms, still poses a significant challenge. Geometric 
constraint enforcement is an essential technique to achieve 
controlled behavior of objects such as robot joints and non-
penetration conditions for collision problems. Maintaining a 
hard constraint under a tight error bound is critical since a 
small, but accumulating constraint drift could result in 
instabilities in dynamic systems. Constraint-based control 
using Lagrange multipliers is well studied and successfully 
used for rigid body dynamic systems [4]. However, the 
Lagrange Multiplier method, associated with ordinary 
differential equations, includes a fundamental limitation of 
an accumulated constraint drift especially without external 
stabilization terms due to the discretization. Therefore the 

accumulated constraint drift becomes apparent and causes 
severe problems in constrained dynamic simulations that 
require long term stability. Several breakthroughs [5, 6] 
have been proposed, both in stabilizing the constraint and 
minimizing drift, but parameter tweaking is required at the 
cost of substantial performance degradation. For highly 
interactive applications that place a high priority on prompt 
feedback, the additional computational cost to reduce the 
constraint errors might be detrimental. To combine the 
controllability using the constraints with such applications, a 
less expensive but still accurate and stable constraint 
enforcement method is important. Another very important 
but often overlooked aspect of constrained dynamics is to 
enforce the constraints while maintaining the physically 
correct dynamic behavior. Constraint drift reduction 
methods without considering the physically correct behavior 
often relocate the objects in the direction that simply 
minimizes the constraint error but could result in the loss of 
energy and consequently unnaturally damped and non-
conforming behavior.     
 The main contribution of this paper is an implicit 
constraint enforcement technique that shows good stability 
over large time steps and quick convergence. In addition, 
our proposed method preserves the natural dynamic 
behavior of simulations and demonstrates long term 
stability. It is particularly effective to enforce a hard 
constraint over a large time step. Unlike the Baumgarte 
method that employs second order stabilization terms, our 
new constraint method does not require ad hoc parameters 
for stabilization and provides the same asymptotic 
computational cost as the Baumgarte method. 
 The rest of this paper is organized as follows: a brief 
overview of constraint enforcement and related work are 
described in section 2. Section 3 includes the description of 
the implicit constraint enforcement scheme. In section 4 we 
provide comparison between our method and previous 
approaches both in constraint error minimization and the 
preservation of dynamic behavior. Section 5 presents the 
experimental results of our method with various 
applications.   
 

II. RELATED WORK 

 Constraint dynamics schemes have been widely studied 
in robotics and computer graphics to control and achieve 
desirable behavior. Constrained dynamics using penalty 
forces [9, 10] and Lagrange multipliers are well studied [1, 
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2, 8] both in rigid and deformable body simulation. Despite 
the limited utility, a single-fixed-node constraint has been 
successfully implemented with mass modification [7]. The 
seminal work of Baumgarte [1] included second order 
feedback terms to stabilize the constraints and has been used 
successfully for many applications [2, 3, 4]. But it has 
several computational complexity related issues. 
Specifically, in Baumgarte’s explicit approach, the time step 
must be within a stability bound [15]. In addition, we have 
to choose problem specific parameters to make the 
numerical system converge to the solution quickly. Quite 
often, it is not easy to find the parameters a priori. Ascher 
and Chin [5] explained the difficulties of the parameter 
choice for Baumgarte stabilization and introduced improved 
constraint stabilization techniques. Provot [11] used simple 
distance reduction using dynamic inverse constraints to 
simulate cloth. However, abrupt change of state of objects 
ignores physical consequences and it may cause loss of 
energy or incorrect dynamic behavior of objects. In addition, 
the ordering of the node displacement is critical when the 
internal meshing structures are complex and collision is 
involved. Cline and Pai [6] proposed a post-stabilization 
approach for rigid body simulation. This approach 
compensates the error of integration each time step to 
correct the constraint error. But post-stabilization requires a 
linear system solution to find the error correction and it does 
not preserve the correct dynamic motion of objects when it 
reduces constraint drifts.  
  

III. IMPLICIT CONSTRAINT ENFORCEMENT  

 One of the most popular methods for integrating a 
geometric constraint into a dynamic system is to use 
Lagrange multipliers and constraint forces. The constraint-
based formulation using Lagrange multipliers results in a 
mixed system of ordinary differential equations and 
algebraic expressions.  We write this system of equations 
using 3n generalized coordinates, q, where n is the number 
of discrete masses, and the generalized coordinates are 
simply the Cartesian coordinates of the discrete masses.  
                         [ ]T

nnn zyxzyxzyxq 222111=                      (1) 
Let ),( tqΦ be the constraint vector made up of m 
components each representing an algebraic constraint. The 
constraint vector is represented mathematically as 
                 [ ]Tm tqtqtqtq ),(   ),(  ),(),( 21 ΦΦΦ=Φ           (2) 
where the iΦ are the individual scalar algebraic constraint 
equations. We write the system of equations  

AT
q FqM =Φ+ λ                              (3) 

0),( =Φ tq  
where AF are applied, gravitational and spring forces acting 
on the discrete masses, M is a 3nx3n diagonal matrix 
containing discrete nodal masses, λ is a mx1 vector 
containing the Lagrange multipliers and qΦ is the mx3n 
Jacobian matrix. A typical solution strategy is to 
differentiate the constraint equation creating a system of 
ODE’s that is easier to solve than the mixed algebra-ODE 
system described above. Baumgarte [1] described a 
technique in which the differentiated constraint equations 

are augmented with terms that are analogous to feedback 
applied to a classical second order system.  

02 2 =Φ+Φ+Φ βα                          (4) 
the parameters α and β determine the character of the 
transient as 0→Φ . Equation (4) may be expressed in a 
more convenient form by differentiating the constraint 
vector as follows  
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or 
                             qtq qt Φ+Φ=Φ ),(                                 (6) 
Continuing in this fashion we arrive at the result 
                                         γ̂=Φ qq                                     (7) 
where 

Φ−Φ+Φ−Φ−Φ−Φ−= 2)(22)(ˆ βαγ tqttqtqq qqqq     (8) 
and the subscripts q and t indicate partial differentiation 
with respect to q and t, respectively. q may be isolated form 
equation (3) 
                                  λT

q
A MFMq Φ−= −− 11                      (9) 

this may be substituted into equation (8) to obtain the linear 
system that must be solved for the Lagrange multipliers 
     ),(),(ˆ),(),( 11 tqFMtqtqMtq A

q
T
qq

−− Φ+−=ΦΦ γλ      (10) 
This equation along with equation (3) can be solved with a 
variety of explicit methods. Solution with explicit methods 
constrains the time step to be within a stability limit. An 
additional difficulty is that selection of the parameters α  
and β in such a way as to force satisfaction of the constraint 
to a lower error tolerance decreases the time increment 
allowed from stability considerations. In addition, selection 
of these parameters is ad hoc and problem dependent.  
 Motivated by these considerations as well as the success 
of the implicit integration method of [7], we decided to 
investigate the implicit method of constraint satisfaction. 
The implicit method is first order and is implemented the 
following way. The equation of motion along with the 
kinematics relationship between q and q are discretized as 

),(),()()( 11 tqFtMtqtMtqttq AT
q

−− ∆+Φ∆−=∆+ λ      (11) 
)()()( ttqttqttq ∆+∆+=∆+                   (12) 

The constraint equations written at new time thus they are 
treated implicitly 
                               ( )( ), 0q t t t tΦ + ∆ + ∆ =                      (13) 
Equation (13) is now approximated using a truncated, first-
order Taylor series  

( ) 0),()()(),(),( =∆Φ+−∆+Φ+Φ ttqtqttqtqtq tq      (14)   
Substituting )( ttq ∆+ from equation (11) into equation (12) 
we obtain 

             
{ }1 1

( ) ( ) ( )

( , ) ( , )A T
q

q t t q t tq t

t tM F q t tM q t λ− −

+ ∆ = + ∆

+∆ ∆ − ∆ Φ
             (15) 

Substitution of this result into equation (14) thus eliminating 
)( ttq ∆+  results in the following linear system with λ  the 

remaining unknown. 
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Note that the coefficient matrix for this implicit method is 
the same as the coefficient matrix for the Baumgarte 
method. This system is solved for the Lagrange multipliers 
then equations (11) and (12) are used to update the 
generalized coordinates and velocities. The matrix is usually 
symmetric and positive definite. We solve this system using 
a preconditioned conjugated gradient method with an option 
to switch to bi-conjugate gradients stabilized for non-
symmetric cases.  

 This constraint-based scheme has several advantages. 
The scheme is simple to implement, and it requires no 
additional computation. The constraints are satisfied without 
the time lag and oscillations associated with the Baumgarte 
method. Perhaps the most important advantage of this 
scheme is that the constraint enforcement does not place a 
stability limit on the time step while factoring the same 
linear system as the Baumgarte method requires. Another 
important advantage of implicit constraint enforcement is its 
insensitivity to the initial conditions. By the time of 
constraint activation, initial conditions may not be perfectly 
met or too costly to guarantee at every instance. This is 
particularly important for many actual implementations and 
applications since the preparation for the correct initial 
conditions could be very time consuming and tedious. Due 
to the inherent numerical damping behavior of the implicit 
approach, it quickly converges to the solution without much 
oscillation, even if we do not have a perfect initial condition 
that meets 0Φ = , 0Φ = . In addition, since the constraint 
forces are computed from the future time step with respect 
to the motion of objects, the constraint error reduction is 
performed within the context of conforming dynamic 
behavior, resulting in the preservation of correct dynamic 
behavior. This is detailed in Section IV. 
 

IV. CONSTRAINT ERROR AND DYNAMIC BEHAVIOR ANALYSIS 

 To measure the total amount of constraint drift and to 
compare the dynamic behavior during simulation, we tested 
our implicit constraint enforcement system with a robotic 
link connected with revolute joints. As a reference, we also 
implemented a same 2-link robot arm represented in a 
reduced coordinate system. The complete state of the robot 
arm is represented by angles of joints without the use of 
constraints so the constraint error does not exist at all. The 
results of the reduced coordinate approach are obtained with 
a higher order method (fourth order Runge-Kutta) and 
represent an accurate trajectory for the simple 2-link robot 
arm. For comparisons, all experiments are done in the 
reduced coordinate system as a reference, a post 
stabilization method [6] (one of the best ways to reduce 
constraint drift), and our implicit constraint method. Instead 
of Baumgarte stabilization method [16] that adds the second 
order stabilization terms to reduce the constraint drift in 
equation (4), the post-stabilization method [6] rectifies the 
position of the nodes at each integration time step to satisfy 
the constraint enforcement. The constraint equations include 
constraint error, ( ) 0),( ≠Φ ttq , because of numerical drift. 

The post-stabilization method attempts to find the 
displacement dq  which eliminates this numerical drift and 
forces the constraint equations to be zero. Thus we can 
approximate this condition by following equation:     

0)()()( =Φ+Φ≈+Φ dqqqdqq q                   (17) 
again qΦ is the mx3n Jacobian matrix. The unknown dq can 
be obtained by solving the linear system in equation (17). 
Since usually qΦ is not a square matrix, a pseudo-inverse 
method is used to solve the linear system: 
                         ( ) )()( 1 qdq T

qq
T

q ΦΦΦΦ−= −                     (18) 
 

 
Fig. 1 A simulation of a freely falling 2-link robot arm under gravity  

 
Figure 1 shows a snapshot of a 2-link robot arm falling 
down under gravity simulated using three different methods 
(reduced-coordinate approach, post-stabilization method, 
and implicit-constraint method). Initially the robot links are 
in horizontal position and one end is fixed. Each method is 
displayed in different colors and the constraint drift is 
shown in bar graph at the lower left corner. Note that there 
is no constraint error in the reduced coordinate system 
method. This snapshot was taken at 73 seconds of the 
simulation after 1460 iteration steps with the step size of 
0.05. It clearly shows that the robot arm computed with the 
post stabilization method is substantially removed from the 
reference robot arm. The robot arm computed with our 
implicit constraint method is almost identical to the 
reference robot arm showing an overlapped image. The total 
constraint error of the implicit method, shown in the lower 
left corner, is a little bigger than that of the post stabilization 
method but the difference is mostly negligible. 
Supplemental animations that show the behavior of the 
robot arm motions in three different approaches can be 
found at [17].  
 To compare the accuracy of the constraint error 
reduction, we recorded the constraint error at each time step. 
Figure 2 shows an accumulated constraint error for the 
simulation of the falling 2-link robot arm shown in figure 1. 
We compared the accumulated constraint error of the 
Baumgarte method, the post stabilization method, and 
implicit constraint enforcement at each integration time step. 
The accumulated error of the Baumgarte method increases 
as the iteration proceeds. Although the accumulated 
constraint error of post-stabilization method converges to 
zero, this approach requires solving an extra linear system, 
as compared to the Baumgarte method, to achieve this 
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result. The size of the linear system grows according to the 
number of constraints, and the performance penalty 
becomes significant as the number of constraints grows. Our 
implicit constraint method significantly reduces the 
accumulated error compared to the explicit Baumgarte 
method and keeps a tight error bound for a long integration 
time. In addition, our method does not require parameter 
tweaking for numerical stabilization and has approximately 
the same asymptotic computational cost as the explicit 
Baumgarte method.  
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Fig. 2 Accumulated constraint error comparison for three different methods 

using 2-link robot arm simulation. 
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Fig. 3 Comparison of y-coordinate trajectory of the second node. 

 
 Figure 3 shows the trajectory of the second node from 
the simulation of the falling 2-link robot arm in figure 1. 
The position of the second link of the robot arm computed 
with the post stabilization method deviates from the 
reference simulation early in the simulation and shows 
substantial differences over the total integration time. 
Although the post-stabilization method preserves a tight 
error bound for the accumulated constraint error, this 
method causes the error in the physical behavior since the 
constraint drift reduction is performed independently from 
the conforming dynamic motion of the objects. Also this 
method requires an additional expensive linear system 
solution. However, as figure 3 illustrates, unlike the post-
stabilization method, our implicit constraint method returns 
physically accurate behavior of the node movement, 
demonstrating almost identical behavior over the total 
integration time. The trajectory of the second link of the 
robot arm overlaps with the reference simulation as shown 
in the figure 3 with obscured lines. 
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Fig. 4 Accumulated constraint error comparison for three different methods 

using 10-link robot arm simulation. 
 

 To test the long term stability of the constraint 
enforcement methods, we used a 10-link robot arm 
connected with ball and socket joints. Figure 4 depicts the 
experimental results of accumulated constraint errors for 
three different methods where the 10-link robot arm is 
falling down under gravity. Initially the robot links are in a 
saw tooth position and both ends are fixed. Even though the 
post-stabilization method well maintains constraints until 
around 1300 integration steps, the constraint error of the 
post-stabilization method suddenly grows even with  a 
relatively small time integration step (0.001) and it causes 
the demolition of the dynamic simulation after producing a 
huge constraint error as shown at the last iteration step in 
Figure 4. On the other hand, our implicit constraint method 
shows comparable, if not better, overall constraint error with 
minor oscillation and it demonstrates better long term 
stability. Our repeated experiments confirm that the total 
error decreases gradually over time due to the inherent 
artificial numerical damping of the implicit method. The 
amount of damping is related to the step size, so the stability 
of the implicit system with a big time step is partially 
provided by the increased damping. This 10-link robot arm 
experimental result obviously reveals the limitation of the 
post-stabilization method in terms of long term stability. 
The fixed end boundary conditions creates a more 
complicated situation where the direction of the constraint 
drift reduction could be conflicting, and solving a linear 
system does not guarantee the optimal solution to maintain 
all of constraints. The post stabilization method operates 
within a certain error threshold and if the total error is under 
the limit and the constraint reduction direction is not 
conflicting, it can successfully minimize the drift close to 
zero. However, if any of those two conditions are not met, it 
shows a sudden failure and it could be critical in long 
integration time simulations.   
  

V. APPLICATIONS  

 The new constraint enforcement scheme was applied to 
a simple rigid body simulation in the examples of error 
analysis and dynamic behavior comparison in section IV. In 
this section, we present applications of the proposed method 
in deformable object simulation. The deformable model 
used here is a simple mass-spring-damper model meshed in 
a triangle or tetrahedral structure. To show the general 
applicability of the proposed method, two examples are 
used: the non-penetration constraint between deformable 
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models and the prevention of excessive elongation of cloth. 
The non-penetration contact constraint for highly flexible 
and thin structures, such as cloth, requires both accuracy and 
stability since even a small error in the contact condition 
could result in visually disturbing artefacts that show an 
obvious protrusion in the opposite side.  
  

A. Non-penetration constraints 

Fig. 5 Non-penetration contacts are used to display a scene where heavy 
balls are violently hitting the cloth secured by two posts. 

 

 Non-penetration constraints must be enforced when a 
piece of cloth is reaching a resting contact. For a cloth/solid 
case, it may involve only a node while a cloth/cloth contact 
case involves four nodes: a node and a triangle or edge-
edge. Instead of faking the physics by instantly moving the 
node to the triangle surfaces, we put a non-penetration 
constraint on the four nodes and let the constraint bring 
them to the colliding surface. From three points of the 
triangle, a plane equation 0=+++ DCzByAx is derived 
and the node coordinates are plugged in as x, y, z to make a 
geometric constraint relating 4 nodes. Even if the initial 
conditions of 0=Φ , 0=Φ are not met, the non-penetration 
implicit constraint enforcement brings the node and triangle 
to the stable contact configuration quickly. One important 
issue is to release the constraint in a timely manner to 
prevent nodes from remaining in a contact configuration 
even if they are trying to separate. We use both velocity 
directions and a Voronoi region to determine the constraint 
release conditions. If the two parties’ relative velocity is 
positive (to separating direction) then the constraint is 
deactivated. In addition, the constraint is released as well 
when the node is moving away from the Voronoi region of 
the counterpart triangle. This constraint release scheme 
allows free movement on the triangle while preventing 
further penetration. The Edge/edge case can be modeled 
similarly along the edge direction. To simulate the thickness 
of a fabric, we can use an arbitrary constant in the constraint 
equation. Constraint based non-penetration is independent 
from a particular collision detection algorithm, so it can be 
used in conjunction with existing repulsion based or hybrid 
collision schemes. In addition, the constraint can be set to 
the velocities of the colliding nodes if we know the collision 
is imminent and if we want to limit the involved nodes 

motion up to the point where collision could occur. The 
outline of the collision and resolution approach is  

1. Detect collision and identify the involved four nodes 
(node-triangle, or edge-edge). In cases where a complex 
multi-collisions occur on a same node, detailed collision 
resolution directions are identified by the collision 
resolution algorithm  

2. Apply the non-penetration constraint between a node 
and plane (or edge and edge) so that the node can be 
freely moved on the plane (or on the edge). The implicit 
constraint will bring the node and surface (or edge and 
edge) to the contact configuration quickly, even if the 
initial positions and velocities are not valid. 

3. If the node goes outside of the Voronoi region of the 
triangle, or the constraint force is generated to attract 
the two parties together, (when they are trying to move 
in separating direction) the constraint is released.  

 

B. Prevention of excessive elongation 
 Excessive elongation is a typical flaw of the mass-
spring mechanism for cloth simulation. Provot [11] used 
inverse kinematics to prevent the elongation beyond 10%. In 
this case, ordering is important and sometimes it becomes 
quite complicated when there are many boundary conditions 
and collisions are involved. Provot [12] and Desbrun et al. 
[14] used an iterative method to address the problem and 
Bridson et al. [13] used a similar iterative technique on the 
velocity to prevent elongation in the next step. However, 
these approaches do not preserve the physical properties and 
result in non-conforming changes or interpolation of 
velocities and momentum. Non-physically based alteration 
of those entities may result in the loss of realism especially 
when we are using a large time step and the cloth is affected 
by big external forces. Baraff and Witkin [7] used stiff 
springs for structural and shear springs and soft bending 
springs to prevent the excessive elongation. The numerical 
instability was treated by using a global implicit ODE. 
However, using stiff structural and sheer springs all the time 
does not represent the true biphasic elongation of fabric 
well. A cloth tends to stretch easily up to a point where the 
resistance grows quickly. All above approaches are basically 
similar in terms of computational complexities because all 
use similar iterative sparse linear system solving to handle 
the elongation.   

 Our method is to put implicit constraints only to the 
elongated springs beyond 10%. This constraint based 
method is essentially similar to the existing methods in 
terms of the asymptotic computational complexity since it 
also requires a linear system solution to get the Lagrange 
multipliers. However, our approach can be applied to only 
the elongated springs locally, depending on the current 
status of each spring. The size of the linear system can be 
much smaller in case where the constraints are not 
dominantly applied. Since only the source of the stability 
problem is treated implicitly, overall performance can be 
much improved. In contrast, implicit ODE methods treat all 
springs in every case as potential candidates for the source 
of numerical instability so it solves the linear system in full 
size that includes every spring in the system. In our method, 
only when the springs are elongated beyond a threshold, 
they are converted to constraints, and consequently the size 
of the matrix becomes smaller. The superior stability of 
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implicit  enforcement on an inaccurate initial condition 
contributes to the stability of the system and makes the 
implementation very simple even if we are trying to bring an 
already over elongated spring to a proper length. 

 
Fig. 6 The mesh view of a cloth patch in a collision between a moving ball 
and the freely falling cloth under gravity. The cloth is hung by two fixed 
point-node constraints and the implicit constraint enforcement is used to 
prevent the excessive elongation of cloth springs. 
  

Constraint based elongation prevention is useful when a 
cloth is under a high impact force. If a heavy ball is hitting 
hard in the middle of a piece of cloth, the repulsion force 
will be generated in the normal direction of the ball surface. 
If we are using springs, we do not know a priori what 
stiffness and damping constants would guarantee the 
prevention of excessive elongation. Insufficient coefficients 
often result in over extended edges to show an over-elastic 
behavior. Combined with non-penetration sliding contact, 
the hard constraints generate a realistic cloth behavior.  

VI. CONCLUSION    

 This paper reports a new implicit constraint 
enforcement technique that is stable over a large time step 
and does not require problem dependent feedback 
parameters. Its computational cost is same as that of explicit 
Baumgarte method, but its accuracy is improved 
significantly. Unlike the post-stabilization method, our 
method preserves the dynamic behavior of the motion. We 
have shown that it can be efficiently integrated into various 
types of dynamic simulation. The rigid robot arm simulation 
shows that our implicit constraint enforcement provides 
both numerically accurate and physically correct behaviour 
in comparison with the existing methods. For cloth 
simulation, by replacing only the elongated springs with 
distance constraints, a substantial performance advantage 
over global implicit ODE is demonstrated. Since the new 
implicit constraint enforcement uses the future time step to 
estimate the correct amount of the constraint force, it is well 
suited to model hard constraints. The new implicit constraint 
enforcement method is also successfully used to model non-
penetration constraints. Combined with an adaptive 
constraint activation and deactivation scheme, the implicit 
constraint enforcement method can substantially enhance 
the controllability of the dynamic simulation of deformable 
objects. We believe that having a powerful and stable 
constraint enforcement method can be a very useful tool to 
address various control problems in a unified and consistent 

manner. We have demonstrated that those diverse problems 
can be easily cast as a constraint problem in a simple and 
straightforward way and can be effectively solved without 
any additional cost. 
 For future work, the implicit constraint method will be 
implemented to a higher order improving the accuracy of 
the error minimization. In addition, a better solution to 
dealing with a singular linear system arising when many 
conflicting constraints are imposed must be found. 
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