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Abstract 

 
This paper proposes a second-order implicit constraint enforcement method which 
yields enhanced controllability compared to a first-order implicit constraints 
enforcement method. Although the proposed method requires solving a linear system 
twice, it yields superior accuracy from the constraints error perspective and guarantees 
the precise and natural movement of objects, in contrast to the first-order method. 
Thus, the proposed method is the most suitable for exact prediction simulations. This 
paper describes the numerical formulation of second-order implicit constraints 
enforcement. To prove its superiority, the proposed method is compared with the first-
order method using a simple two-link simulation. In this paper, there is a reasonable 
discussion about the comparison of constraints error and the analysis of dynamic 
behavior using kinetic energy and potential energy. 
 
 
Keywords: Implicit constraint enforcement, dynamics simulation, geometric constraint, 
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1. Introduction 

Since the recent remarkable development of computer hardware for higher throughput, and 
software techniques for effective computer simulation, dynamic simulation to predict the 
complicated movement of objects has been widely studied in the fields of computer 
animation and computer graphics.  

In the past decade, research has been extensive, for modeling and simulating objects, and 
many impressive results have been achieved. However, to achieve successful dynamic 
simulation results, the accurate control of dynamic simulation which maintains a constraint 
error within a tight error bound is also essential. For instance, a link simulation involves a 
variety of geometric constraints such as ball-and-socket, hinges, sliders, universal joints, and 
contact constraints. If these constraints are not effectively maintained, not only is the correct 
movement of links unpredictable, but the accumulating constraint drift could cause 
instability of the simulation system. Therefore, enforcing stringent geometric constraints 
within a tight error bound is critical for robust dynamic simulations.  

In general, Lagrange multipliers have been widely applied to the constraint enforcement 
of dynamic simulations. Constraint satisfaction through the use of Lagrange multipliers 
represents a challenging problem numerically, and the resulting system of equations is a 
mixed ordinary differential equation (ODE) algebraic system. This problem is solved by 
differentiating the constraint equations, replacing the algebraic equation with an ODE, but 
the solutions include numerical drift in the constraint error. Thus, Baumgarte [1] introduced 
a stabilization method to reduce numerical drift using two parameter terms, which is still 
widely used for many dynamic simulations, [2][3][4] due to its simplicity. However, this 
explicit Baumgarte stabilization method requires a small integration time step and ad-hoc 
coefficients for which it is not easy to find proper constant values for stabilization.  

Instead of applying geometric constraints, hard springs and penalty forces [5][6][7] are 
sometimes used. However, they often cause numerical instability in simulations with a stiff   
numerical system. Recently, Cline and Pai [8] presented a post-stabilization method for rigid 
body simulation. Although it yields superior accuracy in terms of constraints error, the post-
stabilization method requires additional computational cost to maintain accuracy and can 
cause unnatural motion of objects.  

In this paper we extend our previous first-order implicit constraint enforcement method 
[9] to the second-order, using a predictor-corrector step. The specific contributions of our 
paper are: 

 
 enhanced performance in constraint error, that stringently controls the geometric 

constraints for minute simulations such as link simulation, robot simulation, car crash 
simulation. 

 inherited characteristics of the first-order implicit method, that guarantees the natural 
motion of objects in most cases and does not require any problem-dependent constant 
values.  
 

The rest of this paper is organized as follows: the brief review of research on constraint 
enforcement is presented in section 2. Section 3 describes the formulation of the existing 
first-order implicit constraint method and the proposed second-order implicit constraint 
method. Experimental results about constraint error and motion analysis using a simple link 
simulation are described in section 4. Our conclusion is presented in the final section. 
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2. Related Work 

Geometric constraints have been intensively researched for mechanical simulation, robot 
simulation, computer dynamic simulation, and computer animation, to effectively control 
objects. In early work, hard springs and penalty forces [5][6][7] were often applied as an 
alternative to geometric constraints. However, these approaches cause numerical stiffness, 
thus the integration time step must be relatively small, to prevent numerical instability, 
which may result in the crashing of simulations. Therefore, these methods require excessive 
computation compared with the implicit constraint method, which can use a relatively large 
integration time step. Thus, it is not suitable for rapid simulation.  

The penalty force method runs the simulation without any restrictions, then, adds specific 
hard springs to satisfy the pre-defined constraints. However, in most cases it is difficult to 
find suitable coefficients of springs to maintain the constraints. Despite limited usability, a 
single fixed-node constraint has been successfully applied using a mass modification 
approach [10]. 

Once the geometric constraints for a simulation are defined by equations, the appropriate 
constraint forces should be calculated, to maintain these constraints. One of the most popular 
methods for including geometric constraints in a dynamic system is to use Lagrange 
multipliers and constraint forces. However, there are two sources of numerical drift for 
constrained-based dynamic simulation: computational error in Lagrange multipliers and 
numerical integration. Some numerical drift results from numerical errors from calculating 
Lagrange multipliers, however, most numerical error results from unavoidable errors of 
numerical integration during the simulation. Therefore, constraint stabilization methods have 
been applied to remove this numerical drift.  

Baumgarte [1] uses two feedback terms to stabilize the numerical drift of constraints and 
this has been successfully used for many applications. However, the explicit Baumgarte 
method is limited to a small time step, which must be within a stability bound, and the 
problem-specific parameters have to be selected for rapid convergence of a numerical system 
to a solution. It is frequently the case that it is difficult to find the proper a priori values. 
Ascher et al. [11] described the difficulty of the selection of proper parameter values for the 
Baumgarte stabilization method, and introduced improved constraint stabilization techniques.  

Provot [12] introduced a simple distance-reduction approach using dynamic inverse 
constraints for a cloth simulation. However, this method ignored the physical properties 
which were associated with changing the states of objects, so the result may be energy loss 
that induces incorrect dynamic behavior of objects. In addition, the ordering of node 
displacements is critical when the internal meshing structures are complex and collision 
handling is involved.  

Cline and Pai [8] also proposed a post-stabilization approach that compensates for the 
numerical error at each integration time step, for rigid body simulation. However, the post-
stabilization method has additional computational cost for error correction and does not 
guarantee the correct dynamic motion of objects [9]. Choi and Ko [13] applied semi-implicit 
integration to overcome numerical instability and post-buckling instability in a cloth 
simulation. Recently, Goldenthal et al. [14] applied the enforcing constraints to maintain the 
inextensibility of a cloth simulation, using a constrained Lagrangian mechanics and a rapid 
projection method. 

3. Proposed Second-order Implicit Constraint Enforcement Scheme 
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3.1 First-order implicit constraint enforcement 
A mixed system of ordinary differential equations and algebraic expressions can be written 
using q , 3n  generalized coordinates, where n  is a number of discrete masses. The 
generalized coordinates, using the Cartesian coordinates, are; 

 
[ ]Tnnn zyxzyxzyxq L222111=                                            (1) 

 
An m  x 1 constraint vector, ( , )q tΦ , represents algebraic constraints. The constraint vector 
is represented by; 

 
( ) ( ) ( ) ( )[ ]Tm tqtqtqtq ,,,, 21 ΦΦΦ=Φ L                                       (2) 

 
Here, ( , )i q tΦ  is an individual scalar constraint equation. In contrast to an explicit 
constraint method, the first-order implicit constraint enforcement method has to maintain 
geometric constraints at each new time step and the system of equations can be written as; 

 
( , ) ( , )T A

qMq q t F q tλ+ Φ =&&                                           (3)                                  

( )( ), 0q t t t tΦ + Δ + Δ =                                                (4) 
 

where ( , )q tΦ is the external and gravitational forces which are applied to the discrete masses, 
M is a 3n  x 3n diagonal matrix for discrete masses, λ  is an m  x1 vector that contains 
Lagrange multipliers and qΦ  is an m  x 3n  Jacobian matrix, and the subscript of q  is a 
partial differentiation with respect to q . Eq. (4) can be approximated with a truncated 1st 
order Taylor series 

 
( ) ( ) ( ) ( )( ) ( ), , , 0q tq t q t q t t q t q t tΦ + Φ + Δ − + Φ Δ =                     (5) 

 
Again, the subscripts of q  and t  are the partial differentiation with respect to q  and t , 
respectively. Eq. (6), which is a linear system with unknownλ , can be derived from the 
elimination of ( )q t t+ Δ ; 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2

1 1 1, , , , , ,T A
q q t qq t M q t q t q t q t q t M F q t

t t t
λ− −⎧ ⎫Φ Φ = Φ + Φ +Φ +⎨ ⎬Δ Δ Δ⎩ ⎭

&    (6) 

 
A ( ) ( )1, ,T

q qq t M q t−Φ Φ  matrix on the left-hand side of Eq. (6) is usually symmetric and 
positive definite. Thus, the linear system in Eq. (6) can be solved for the Lagrange 
multipliers,λ , for the first-order implicit constraint enforcement method. Then, subsequent 
positions and velocities can be readily updated.  

In general, each dynamic simulation has different goals. For instance, in real-time 
simulations such as computer games, computer simulations, virtual reality systems, and 
computer animations, a rapid, but stable constraint enforcement scheme is the most 
important factor for successful dynamic simulations. In this case, the first-order implicit 
constraint enforcement method suffices to satisfy these demands. 
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3.2 Proposed second-order implicit constraint enforcement 
In contrast to real-time simulations; mechanical simulation, structure simulation, weather 
simulation, robot link simulation, and automobile crash simulation can afford to incur some 
computational cost, to achieve accurate simulation results, although there is a time limitation 
for achieving these results. Thus, to meet these demands, this paper proposes a robust and 
accurate second-order implicit method. The proposed second-order implicit constraint 
method is a predictor-corrector algorithm including algebraic constraint enforcement. The 
basic theory of the algebraic constraint enforcement method is to expand the algebraic 
constraint function at each new time state in a Taylor series, with the base point at the 
previous time state. The predictor step is a first-order step, and we make the system of 
differential equations discrete first-order.  

 Predictor Step: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
2

, 1, , , , ,T p A
q q q q

q t
q t M q t q t q t q t M F q t

t t
λ− −Φ

⎡ ⎤Φ Φ = + Φ +Φ⎣ ⎦ Δ Δ
&   (7) 

( ) ( ) ( ) ( )1 1, ,p A T p
qq t t q t tM F q t tM q t λ− −+ Δ = + Δ − Δ Φ& &                  (8) 

   ( ) ( ) ( )p pq t t q t tq t t+ Δ = + Δ + Δ&                                  (9) 
 

The corrector step is a second-order step using half-time variables. The predicted new time 
variables are used to calculate required half-time variables. The half-time variables are used 
to calculate the half-time Jacobian constraint. 

 Corrector Step: 
 

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

1

1
2

, ,

2 ,2 ,
, ,

h hT
q q

hp
q p h A

q

q t M q t

q tq t
q t q t t q t M F q t

t t

λ−

−

⎡ ⎤Φ Φ⎣ ⎦
ΦΦ

= + − + Δ + Φ
Δ Δ

& &
     (10) 

   ( ) ( ) ( ) ( )1 1, ,hT A
qq t t q t tM q t tM F q tλ− −+ Δ = − Δ Φ + Δ& &                       (11) 

( ) ( ) ( ) ( )( )
2
tq t t q t q t t q tΔ

+ Δ = + + Δ +& &                                 (12) 

Here, t t+ Δ  refers to the approximation of the new time state, t  refers to the approximation 
of the old time state, and h  is a midpoint superscript. Note that this scheme requires solving 
two symmetric positive definite linear systems per integration time step. 

4. Experimental Results 

To compare the accuracy of the implicit constraint enforcement methods and measure the 
total amount of constraint error during dynamic simulations, we tested the first-order implicit 
constraint method and the proposed second-order implicit constraint method using a simple 
two-link simulation connected with revolute joints.  

Fig. 1 shows the experimental two-link simulation falling downwards under gravity, using 
a developed simulator. Initially the links are in the horizontal position, then, the links are 
moving downwards due to gravity and mass. The length of each link is constrained to be  10. 
The red sphere illustrates a fixed node constraint to hang the links. The green spheres are 
moving freely. 
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(a) Initial status                         (b) Links are moving downwards due to gravity 

Fig.1. Simple two-link simulation.  

4.1 Comparison of constraint error  
To prove the performance of each implicit method, we recorded the constraint error of each 
link over every integration time step. This is measured by the difference of the accumulated 
absolute value between the original length of each link and the current length. 

Fig. 2 and Fig. 3 depict the experimental accumulated constraints error for each link, at 
each integration time step, for the two-link simulation shown in Fig. 1. We compared 
implicit constraint enforcement using the first-order implicit method and the second-order 
implicit method. Although the accumulated constraint error increases for a larger integration 
time step, the proposed second-order implicit method yields twice the accuracy in terms of 
constraint error than the first-order implicit method.  

 
Comparision of Implicit Constraint Error (dt = 0.01)
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Fig. 2. Constraint error comparison between 1st order and 2nd order implicit method (Integration time 

step: 0.01). 
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Comparision of Implicit Constraint Error (dt = 0.05)
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Fig. 3. Constraint error comparison between 1st order and 2nd order implicit method (Integration time 

step: 0.05). 

4.2 Analysis of dynamic behavior 
As described in [9], the correct dynamic motion of objects is also a critical factor in 
achieving successful results from dynamic simulations. To analyze the dynamic behavior of 
each method during the simulation, we also tracked the proposed second-order implicit 
constraint method using the two-link simulation shown in Fig. 1. As a reference, we 
implemented the same two-link represented in the reduced coordinate system. The complete 
state of a two-link is represented by the angles of links without any constraints, where there 
is no constraint error. The trajectory of the reduced coordinate approach is obtained using the 
4th order Runge-Kutta method. It represents an accurate movement, for the simple two-link. 

During the two-link simulation, the sum of kinetic and potential energy should be a 
constant. We estimated the correct movement of the two-link using potential and kinetic 
energy in 2D. 

Kinetic energy: 21
2

K mv=                                               (13) 

Potential energy:  P mgh=                                                      (14) 

 
Fig. 4. Geometric definition for two-link. 
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1 1 1 1 1 1sin               y cosx L Lθ θ= =                                         (15) 

1 1 1 1 1 1 1 1cos           y sin   x L Lθ θ θ θ= = −& && &                                   (16) 
 2 1 2 2 2 1 2 2sin               y y cosx x L Lθ θ= + = +                              (17) 

2 1 2 2 2 2 1 2 2 2cos           y y sinx x L Lθ θ θ θ= + = −& && & & &                           (18) 
 

For the kinetic energy; 

( ) ( )

( )( )

2

2 2 2 2
1 1 1 2 2 2

2 2 2 2 2 2
1 1 1 2 1 1 2 2 1 2 1 2 1 2

1
2
1 1    
2 2
1 1   2 cos  
2 2

K mv

m x y m x y

m L m L L L Lθ θ θ θ θ θ θ

=

= + + +

= + + + −

& & & &

& & & & &

          (19) 

 
For the potential energy; 

 
Fig. 5. Geometric definition with respect to height. 

 
 

In Fig. 5, L  can be defined by y h+ , thus, the potential energy can be rewritten as; 
 

cos

(1 cos )

y h L
L h

y
h L

θ

θ

+ =
−

=

= −

                                                  (20) 

 

1 1 1 2 1 1 1 2 2 2(1 cos ) ( cos cos )P m gL m g L L L Lθ θ θ= − + − + −                 (21) 
 

Since 
11

d L L
dt θθ

∂ ∂
−
∂∂ &

 must be 0 ; 

 

θ

h

L
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{ }2 2
1 1 1 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 2

1 1 1 2 1 1

2 2
1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2

1 2 1 1

cos( ) sin( )

sin sin

( ) sin( ) cos( )
   ( ) sin 0

d m L m L m L L m L L
dt

m gL m gL

m m L m L L m L L
m m gL

θ θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ θ
θ

+ + − + −

+ +

= + + − + −
+ + =

& & & & &

&& & &&
         (22) 

 

And,  
22

d L L
dt θθ

∂ ∂
−
∂∂ &

must also be 0 ; 

 

{ }2
2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2

2 2
2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2

cos( ) sin( ) sin

sin( ) cos( ) sin 0

d m L m L L m L L m gL
dt

m L m L L m L L m gL

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

+ − − − +

= − − + − + =

& & & &

&& & &&
     (23) 

 
The position of nodes for each time step is estimated by the fourth-order Runge-Kutta 

ODE, to yield high accuracy. Then, the angle of displacement of each node is estimated by 
solving linear equation Eq. (23); 

 
2

1 2 1 2 1 2 1 2 1
2

2 1 2 1 2 2 2 2

2
2 1 2 1 2 2 1 2 1 1

2
2 1 2 1 2 1 2 2 2

( ) cos( )
cos( )

sin( ) ( ) sin
sin( ) sin

m m L m L L
m L L m L

m L L m m gL
m L L m gL

θ θ θ
θ θ θ

θ θ θ θ
θ θ θ θ

⎡ ⎤+ −⎡ ⎤
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤− − − +
= ⎢ ⎥

− −⎣ ⎦

&&

&&

&

&

                                 (23) 

 
Finally, the position of each node is calculated by Eq. (15) and Eq. (17), respectively. 
 

Y-Coordinate Trajectory (dt = 0.01)
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Fig. 6. Analysis of link movement (Integration time step: 0.01). 
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Fig. 6 shows the y-coordinate trajectory of the second node, from the dynamic simulation 

of the two-link in Fig. 1. The position of the rightmost node, which is represented by the 
green sphere in Fig. 1 (a), is recorded during the simulation of the second-order implicit 
method and the reference simulation.  

The trajectory of the end of the two-link, for the proposed second implicit constraint 
method, can be exactly superimposed on the reference simulation, as shown in Fig. 6. Thus, 
the proposed method executes physically correct behavior with reference to the total 
integration time. It yields enhanced accuracy in terms of constraints error. 

4.3 Computational complexity 
In methods of constraint enforcement, the most extensive component of computation is 
solving a linear system to calculate the Lagrange multipliers. Thus, overall performance of 
dynamic simulation is deeply dependent on the linear system. For the first-order Baumgarte 
stabilization method, we must solve the linear system in Eq. (24); 

1 1( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )T A
q q q qq t M q t q t q t q t M F q t q t q tλ α β− −Φ Φ = Φ +Φ + Φ + Φ& &&  (24) 

Here, α  and β  are problem-dependent values. The linear system for the first-order implicit 
constraint enforcement is given by Eq. (6). Note that the coefficient 
matrix ( ) ( )1, ,T

q qq t M q t−Φ Φ , for the first-order implicit method, is the same as the 
coefficient matrix for the explicit Baumgarte stabilization method. Therefore, the asymptotic 
computational complexity of these two methods is the same. The post-stabilization method 
requires an additional linear solution, for the correction step mentioned in [9]. The proposed 
second-order implicit method requires us to solve a linear system twice, for Eq. (7) and Eq. 
(10). However, it yields enhanced accuracy in terms of constraint error by preserving the 
correct motion. It is suitable for highly detailed dynamic simulations. 

5. Conclusion 

This paper describes a robust second-order implicit constraints enforcement method that is 
stable over a relatively large time step, and enhances the accuracy in terms of constraint error, 
by preserving valid dynamic motion from the extension of Taylor series. The proposed 
method inherits the benefits of the first-order implicit constraints method, thus, it does not 
require problem-dependent feedback parameters. Although it requires an additional linear 
solution, we conclude that a robust and accurate constraint enforcement method is a highly 
useful method, which can be effectively applied to detailed simulations such as mechanical 
prediction, bridge construction, robot movement, and car collision. 
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