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Feature Article

M any modern interactive graphics appli-
cations such as computer games and sur-

gical simulators require both reasonably high mesh
resolution and higher performance to achieve a smooth
and responsive interactivity and real-time animation of
deformable objects. In addition, enhanced realism of
physical simulation is called for to better represent real-
world deformable materials such as human tissue. It’s still
a challenge to resolve the conflicting goals of higher phys-
ical and dynamic realism on a densely meshed structure
and at the same time achieve faster computation. 

Researchers have extensively studied modeling and
simulating deformable objects in the past decade. Over
time, this has led to two main threads: 

■ continuum mechanics-based techniques for an accu-
rate simulation and 

■ a discrete mass-spring damper system for a respon-
sive and efficient model. 

While the continuum mechanics-based finite element
method (FEM) or boundary element method (BEM) can
deliver sophisticated and physically accurate analysis,
usually their computational complexity is prohibitively
expensive for an interactive application. 

With this in mind, we decided to pursue an enhanced
mass-spring model that incorporates the object level of
volume preservation into a mass-spring model without
a significant computational cost (for other approaches,

see the sidebar “Related Work” on the next page). Con-
trary to the traditional continuum mechanics-based
methods, our method provides a much faster real-time
volume-preserving deformation, yet the quality of simu-
lation in dynamic behavior is comparable to an FEM-
based model. 

Our method uses only the surface mesh and keeps the
material properties intact. Our new volume-preserving
constraint is well maintained within
a tight error rate and example anima-
tions demonstrate behavior that’s
almost identical to a linear FEM-
based simulation. 

We can readily apply our proposed
method to any existing meshed
deformable model regardless of the
geometric structure because the con-
straint doesn’t affect the material
properties or the topology of element
connectivity. We use a deformation
zone to efficiently control the distri-
bution of volume-preserving forces
for representing the local deforma-
tion of objects depending on the
material properties and the duration
and magnitude of external loading. Figure 1 shows the
result of muscle deformations when flexing the forearm
at the elbow joint. We plausibly simulate active muscle
bulging and passive volume preservation incurred by
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1 Muscle deformation using a volume-preserving mass-spring system.



skin-to-skin contact (created in the border of the 
upper and lower arm). 

Volume preservation
One reason we need volume preservation is to accu-

rately model various human tissue characteristics,
including the muscle deformation shown in Figure 1.
Approximately 70 percent of the human body is based
on water and the overall volume is well maintained even
during a large deformation. 

Volume preservation helps us accurately model the
detailed motion of a muscle, skin-to-skin contact, and
the creases caused by joint folding. The challenge is to
model the object-level incompressibility using only the
compressible springs and to embed the volume preser-

vation constraint without changing any material prop-
erties of the original mass-spring model. It should
deform freely while maintaining overall volume. 

Another important objective is to use only the surface
mesh to model the volume preservation, because most
graphical models only employ hollow surface mesh
without volumetric connectivity. 

Mass-spring system
The mass-spring system is a simple physical model

where the discrete concentrated mass points are con-
nected by springs to propagate the energy. Modeling
deformable structures requires an appropriate meshing
scheme to represent specific physical and material char-
acteristics. We use standard structure and sheer springs
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Related Work 
As fast algorithms for animating deformable objects have

been introduced, others have tried multiple approaches to
achieve realistic and efficient deformable object animation.
Debunne et al.1 proposed a space- and time-adaptive
method according to the most interesting region for real-
time deformation. Müller and Gross2 introduced a fast
method that uses the warped stiffness approach to represent
some types of material properties using the finite element
method (FEM). However, these methods require additional
storage for precomputation and are restricted for relatively
low-resolution objects. 

Promayon et al.3 used the divergence theorem to
compute and maintain a constant volume using the
projection method, but they require solving a third-order
equation to maintain the constant volume. It might not
guarantee the physically correct behavior of an object similar
to the post-stabilization method,4 because finding the
projection vector to minimize the constraint drift is
performed independently from the object’s conforming
dynamic motion. Moreover, because of the uniform
distribution of the volume preservation, this method only
provides the global deformation of the object and can’t
achieve the local deformation. 

Pauly et al.5 used a surface integral formulation to constrain
deformations to be a constant volume. However, they worked
with contact problems using the Boussinesq approximation
from linear elasticity. These solutions assume small
deformations; hence, they’re appropriate for stiff bodies in
contact, but they’re not suitable for large deformation. 

Hirota et al.6 used a 2D projection method to calculate the
volume of a free-form deformation object, but they require
small meshing resolution to guarantee the accuracy of the
volume calculation. They employ a computationally
expensive numerical minimization approach with a penalty
term that might cause numerical instability. 

Zordan et al.7 applied a volume constraint method based
on the object’s pressure. They calculated the object’s total
volume by summing the volume of a set of the pyramidal
elements that consists of each surface triangle and the center
of mass. However, their method is inapplicable to general
geometric structures, such as torus-like objects, and users
have to provide the arbitrary volumetric modulus to enforce
the volume preservation.

In theory, the collective enforcement of level volume
preservation on every element in an object well provides
local and global deformation of objects. However, it’s
computationally expensive and can cause singularities on
shared nodes when multiple constraints try to move the
shared nodes to different directions to preserve the volume
of each element.

Volume preservation has been used to represent human
muscle dynamics. Nedel and Thalmann8 modeled a mass-
spring muscle with additional angular springs to preserve the
muscle shape, but their approach didn’t include a correct
volume calculation and therefore volume preservation
wasn’t accurate. In addition, the newly added springs 
could easily affect the material properties, often resulting 
in a stiffer model. 

Aubel and Thalmann9 presented an ad-hoc, real-time, 
and realistic modeling tool for building human anatomy
with three layers of muscle structure. But it didn’t include
volume preservation for muscle deformation. 

Bourguignon and Cani10 used additional artificial springs
to the barycenter of tetrahedral elements to maintain an
element level volume. But their method requires stiff
volume-preserving springs to maintain the constraint, and
that could often result in numerical instability. In addition,
adding stiff volume-preserving springs in every element
could change the object’s material properties. For example,
the large stiffness coefficient in the added volume-preserving
springs to prevent the excessive deformation increases the
object’s hardness. It might help to reduce the excessive
volume changes but it doesn’t guarantee constant object
volume during deformation. Furthermore, none of the
previously mentioned mass-spring-based volume
preservation methods includes the nonlinear local
deformation that propagates the constant-volume
characteristics only to the neighboring structures.

The hybrid method11 and adaptive meshing technique12

have been proposed to accelerate simulations, but these
methods aren’t fast enough to achieve real-time interactive
simulation, especially for complex deformable objects that
require high resolution. Preprocessing methods13,14 have
been extensively researched to overcome computational
obstacles but they require additional storage that depends
on a predefined sampling space and the interactive region of
simulation is limited by the presampled space. On the other



to represent the surface of deformable objects similar
to Choi and Ko.1 Curvature-preserving characteristics
are also modeled with bending springs over a curved
edge. The structure springs connect direct neighbor
nodes to model the objects’ elastic properties. The sheer
springs provide the resistance for object sheering and
their connected diagonal nodes. The bending springs
that connect the secondary neighbor nodes define the
bending and flexural properties of the material. They
also help maintain the object’s rest-state shape. The
bending springs preserve the surface’s curvature. 

The mass-spring system only defines the connectivity
between neighboring nodes and their relative displace-
ment as a response to the external load without any infor-
mation about the volume at the element and object

levels. It represents the elasticity by using the compres-
sion and decompression of the length of a spring and the
effects are propagated through the connected mesh net-
work. Thus, an object’s volume preservation is difficult
to achieve in a conventional mass-spring system. 

To overcome the inherent drawback of volume loss of
a mass-spring system, we propose the fast volume
preservation method. Instead of preserving the local
volume of every element (typically a tetrahedron), our
volume-preservation method maintains the global vol-
ume of a closed mesh structure of deformable objects
using only surface mesh. Using only the surface mesh
has some important advantages. We can add volume
preservation to any existing surface mesh object with
minimal modification. Adding a volumetric internal
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hand, although the mass-spring system is simple and
efficient, it’s difficult to accurately model the behavior of
deformable objects because the elasticity is modeled only
with compressible springs. 

Unlike fluid simulation using a point cloud with density, or
an FEM-based elastic model using a volume penalty method,
the mass-spring system doesn’t include a mechanism to
represent the volume either at the object or element level. 

Chen and Zeltzer15 applied a biomedical model of human
muscle using FEM. They applied the tension-length curves to
represent the muscle forces for human biceps simulation.
Inexact volume preservation for human muscle deformation
has also been studied for visually plausible deformation
models using anatomy-based modeling. 

Scheepers et al.16 introduced the anatomy-based
procedural human musculature model to define and
manipulate articulated models. They analyzed the human
body using artistic anatomy and focused on skin
deformation. Although their work successfully described the
anatomical structure and function of bones and muscles,
each muscle was divided into elliptical multibelly muscles to
preserve the volume and bulge of the muscle. But this
method can only represent the muscle deformation using a
major axes ratio (height and width). 

Dong et al.17 also introduced an anatomy-based approach
to represent realistic muscle simulation using geometric
modeling, deformation, and texture. This method enforces
the volume preservation in a nonphysical way to reduce the
problem’s complexity. It’s based on a large error tolerance
and imprecise volume calculation. 

Our proposed method guarantees volume preservation
with a tight error rate (0.01 percent) and physically correct
behavior at virtually no extra cost to the existing mass-spring
system.
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mesh not only requires an additional lengthy remesh-
ing procedure, but it could alter the material properties
and might cause an element inversion problem. 

Finding the proper coefficients for the internal mesh
is not trivial. The problem size is much smaller (with
only the surface mesh) than a volumetric mesh, and
therefore it has a clear performance advantage. The
task of our volume preservation is nicely divided into
computing an overall object volume from a set of sur-
face nodes and triangles, and enforcing the constant
volume constraint at every time step of a mass-spring
simulation. A deformable object’s surface should be
closed to provide the object’s complete boundary, but
there’s no restriction on the convexity or topological
configuration. We use the divergence theorem to repre-
sent the relationship between a triple integral over a
deformable object’s volume and a surface integral over
the object’s surface: 

(1)

In Equation 1, F is an object’s vector field and N is a
surface triangle unit normal vector. The total volume of
a deformable object is estimated by summing the object’s
surface triangles. Assume that the vector F is the posi-
tion vector r, thus can be computed by
following Equation 2. We represent the surface by flat
triangular patches with coordinates (x, y, z) varying lin-
early on these patches. It’s convenient to introduce the
area coordinates as L1, L2, and L3 and express the surface
integral as shown in Lapidus and Pinder:2  

(2)

Note that the unit normal vector is constant on the tri-
angular surface patch. The integral is easily evaluated2

using Equation 3 for integrating polynomials in L1.

(3)

Here a1, a2, and a3 are nonnegative integers, and A is the
area of a triangle. We have the three cases: a1, a2, and a3

are a1=1 a2=a3=0, a2=1 a1=a3=0, and a3 =1 a1=a2=0.
Equation 4 gives us the three integrals we need:

(4)

Therefore, we can obtain the total volume of object V
in Equation 5:

(5)

Here i is the volume contribution of surface triangle i
and nt is the number of surface triangles. This volume
must remain a constant over the entire simulation, so
we cast this condition into a constrained dynamic sys-
tem. The constraint formulation using Lagrange multi-

pliers results in a mixed system of ordinary differential
equations (ODEs) and algebraic expressions. We write
this system of equations (see Equation 6) using 3n gen-
eralized coordinates, q, where n is the number of dis-
crete masses, and the generalized coordinates are simply
the Cartesian coordinates of the discrete masses: 

q = [x1y1z1x2y2z2 … xnynzn]T (6)

Because we only use one volume constraint for the
volume-preserving mass-spring system, the constraint
system is simple. However, we’ll also describe the gen-
eral formulation of a constraint equation for a multicon-
straint dynamic system. Let Φ(q, t) be the constraint
vector made up of m components each representing an
algebraic constraint. Equation 7 mathematically repre-
sents the constraint vector as 

Φ(q,t) = [Φ1(q,t) Φ2(q,t) … Φm(q,t)]T (7)

where the Φi are the individual scalar algebraic con-
straint equations and m is the number of constraints. To
preserve the object’s volume, the difference between V0

(original volume) and V (current volume)—which can
be calculated by Equation 5—should be 0 during the
simulation, as shown in Equation 8:

Φ(q,t) = V−V0  = 0 (8)

We applied the implicit constraint method3 to main-
tain the volume constraint. The constraint force is added
into the momentum equation to estimate the new posi-
tion as follows in Equations 9 and 10:

(9)

(10)

Here FA are applied as gravitational and spring forces
acting on the discrete masses, M is a 3n × 3n diagonal
matrix containing discrete nodal masses, λ is an m × 1
vector containing the Lagrange multipliers, and Φq =
∂V/∂q is the m × 3n Jacobian matrix. For more informa-
tion on how to calculate this, please see the “Addition-
al Information” sidebar. To be treated implicitly, the
constraint equations should be calculated at t + Δt:

Φ(q(t + Δt), t + Δt) = 0 (11)

Equation 11 is now approximated using a truncated
first-order Taylor series in Equation 12:

Φ(q, t) + Φq(q, t)(q(t + Δt) − q(t)) +
Φt(q, t)Δt = 0 (12)

Here the subscripts q and t indicate partial differentia-
tion with respect to q and t, respectively. Substituting

from Equation 9 into 10 we obtain

(13)
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Substituting this result from Equation 13 into Equa-
tion 12 thus eliminates results in Equation 14 with
the remaining unknown:

(14)

If the only constraint is the volume-preservation
constraint, then in Equation 14 

and 

are scalars. Therefore, we can calculate λ by simple divi-
sion and no linear system needs to be solved. 

Local deformation
Simply maintaining an overall volume can produce

undesirable global deformation because the volume-pre-
serving condition is evenly distributed over the surface,
showing a balloon-like behavior. This global volume
preservation might represent homogeneous material
well, but it’s unsuitable for material with complex prop-
erties such as a combination of anisotropy, viscosity, and
nonlinear deformation. For example, when we push the
deformable object with a finger in Figure 2, we can
deform the object three different ways: compressible,
global, and local deformation. 

To provide fast but visually realistic animations of
local deformation, we used a weight vector redistribu-
tion scheme. This scheme provides a flexible approach
to obtain visual reality and isn’t intended to enforce dif-
ferential incompressibility. We implemented a weight
vector on the surface node to distribute the effects of the
volume preservation. The weight vector [w1, w2, w3, …
wn] exists for an individual object and Wi, the weight of
node i, is assigned to every surface node and multiplied

into the constraint terms in the momentum equations
to scale the constraint forces. The sum of the weights is
kept equal to the number of surface nodes. For exam-
ple, in a case where the weight of each node is 1, all the
nodes in the object respond to the change of volume
equally and this represents global object deformation. If
a node has zero weight, then the volume preservation
constraint has no effect on the particular node. 

Figure 3 shows different muscle deformations with
given weight vector distributions (shown in the middle
of the figure). Figure 3a shows the initial state of three
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(a)

Additional Information
If the triangle surface is defined with three nodes, (x1, y1, z1), (x2, y2,

z2), (x3, y3, z3), the formulas for the Jacobian ∂V/∂q are calculated by
using the equations noted in Figure A:

A Equations used to calculate the formulas for the Jacobian ∂V/∂q.
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2 (a) Pressing
the deformable
object with a
finger leads to
three different
deformation
types:
(b) compress-
ible, (c) global, 
and (d) local
deformation.

(b) (c)

3 Weight vector distribution for muscle segments. (a) The initial state of three muscles, (b) weight vectors to
represent asymmetric bulging and contracting for three muscles, and (c) results after the simulation.



muscles. Figure 3b shows three muscle segments with
different weight vectors (where the weight vector is
redistributed more on the left side, evenly on the entire
surface, and more on the right side of the muscle, respec-
tively) to demonstrate the asymmetric bulging and con-
tracting behavior of the muscle models in Figure 3c.

The material properties and characteristics of the
external load cause local and nonlinear deformation.
To model the local deformation, the weight vector dis-
tribution zone is automatically created based on the
direction, duration, and amount of external force as well
as the target material’s various material properties. The
deformation zone with a user-specified threshold value
determines the scope and propagation pattern of the
weight vector redistribution when the external load is
applied to the object. This threshold value defines the
radius of the deformation zone, which proportionally
increases by the increment of duration and amount of

external forces. Figure 4 illustrates the effects of the dif-
ferent deformation zones. The amount and duration of
external force mainly determines the zone’s radius. The
nodes inside the zone are affected by the weight vectors
while the excluded nodes remain intact.

In Equation 15, the volume preservation constraint
force is redistributed among the nodes within the defor-
mation zone using a weight distribution function. Here

(15)

where pi is the position of node i, c is the position where the
external force is loaded, and r is the radius for the defor-
mation zone. This r is defined as being equally proportion-
al to the duration and the amount of external force. The
weight distribution function also guarantees a smooth
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6 These pictures show the interactions between the deformable cow and a spherical probe. (a) Deformable cow model. (b) Weight
vector for local deformation. (c) Global deformation. (d) Local deformation. Note that in (c), the volume-preserving condition is
evenly distributed for the entire cow model so that the effect of volume preservation is hardly noticeable.  In (d), the picture shows
apparent local bulging from a fast and strong contact from a spherical probe.

(a) (b) (c)

4 Local
and global
deformation
zones. (a) Initial
configuration
of an object, 
(b) local 
deformation,
and (c) global 
deformation.

(a) (b) (c)

5 Redistribut-
ing the volume
preservation
constraint force
over time 
simulates
the local and
nonlinear
deformation.

(a) (b) (c) (d)



transition from the affected area to the nonaf-
fected area. To avoid artificial energy loss or
addition from the application of the weight dis-
tribution function, all final weight vectors are
normalized to make the sum of weight equal to
n. Figure 5 illustrates the diffusion of deforma-
tion according to the external load’s duration.
The deformation zone’s radius (the yellow cir-
cle) is increased due to the duration of the
external load. During this simulation, the per-
centage of relative volume errors stays within
0.01 percent. 

Because the Lagrange multiplier is multi-
plied by the weight vector, some errors will
occur in the volume constraint. Our extensive
empirical studies show that the effect is small
enough that we gain the benefit of control of
local bulging at a negligible computational cost with a
small constraint error. To confirm the accuracy of the
proposed local deformation method, we tested our
method using a high-resolution (14,136 triangles)
deformable cow model (see Figure 6a). The red lines
demonstrate the weight vector of local deformation in
Figure 6b when the spherical probe contacts and push-
es the abdomen of the deformable cow. This example
shows the distinct deformations between the global (see
Figure 6c) and local deformation with volume preserva-
tion. The local bulging of the contact area shown in Fig-
ure 6d and the relative volume error of local deformation
for the complex cow model is also less than 0.01 percent.

Implementation and results
We conducted a series of comparative simulations of

a simple deformable ball squeezed by two planes at

three different mesh resolutions. All tests were per-
formed on a 2.0-gigahertz Intel Pentium 4 single proces-
sor with 768 Mbytes of memory. Table 1 shows the
performance summary of a ball-squeezing simulation
tested with three methods: the proposed volume-pre-
serving mass-spring system, a conventional mass-spring
system, and a linear FEM using the element level vol-
ume penalty as shown in Figure 7a. The proposed vol-
ume preservation method requires almost the same
computational cost as the conventional mass-spring sys-
tem but the behavior is close to the FEM-based volume
penalty method, which increases the material’s stiffness
by adding artificial elements in the system. 

In Table 1, unlike the proposed method and conven-
tional mass-spring system, which use surface triangles,
FEM should use tetrahedrons for an entire ball. We used
exactly the same number of surface triangles for com-
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Table 1. Performance comparison of the mass-spring with the proposed
volume preservation, conventional mass-spring system, and linear finite
element method. 

Animation No. of CPU Seconds per Frame 
Elements Mass-Spring Conventional Linear
(Triangles/ with Mass-Spring Finite
Tetrahedrons) Volume Element

Preservation Method

Coarse 2,004/2,691 0.0016 0.0013 0.22
model
Intermediate 1,766/3,528 0.0039 0.0036 0.63
model  
Refined 9,800/52,633 0.013 0.0094 2.59
model  

7 Snapshots of example animations. (a) Ball-squeezing simulation using a linear finite element method, a conventional mass-spring
system, and a proposed incompressible mass-spring system. (b) Cube twisting with proposed incompressible mass-spring system. (c)
Cube twisting with conventional mass-spring system. (d) Muscle deformation with skin. (e) Muscle deformation without skin.

(a) (b) (c) (d) (e)



parison. Again, because the proposed method uses only
the surface mesh for deformable objects, our method is
fast, simple, and free from element inversion4 and stiff-
ness problems.

Figure 8 shows the volume changes of a squeezed ball
in Figure 7a over time in percentage of the original vol-
ume. For comparison, it includes the three methods’
results. We used a relatively big volume penalty coeffi-
cient (the further increase resulted in instability) for the
FEM to well preserve the ball’s global volume. The pro-
posed method’s weight vector was evenly distributed at
unity, so the constraint forces that preserve the global vol-
ume weren’t modified. The conventional mass-spring sys-
tem couldn’t maintain the ball’s volume and resulted in
quite different compressing behavior. In FEM, choosing
an appropriate volume penalty coefficient isn’t trivial,
because a big volume penalty coefficient could demolish
the simulation and the small volume penalty coefficient
might not be enough to maintain an object’s volume. Fig-
ure 8 shows that our method and the FEM produce almost
identical results for volume preservation.

Often a large global deformation under a degenera-
tive twisting of an object could be problematic for the

linear FEM. Zhuang and Canny5 applied a fast nonlin-
ear Green strain using preprocessing of the LU factor-
ization of a small number of large matrices, but still it
isn’t enough to achieve a real-time simulation for com-
plex deformable objects. 

In Figures 7b and 7c, we used a cube and tested our
method and a conventional mass-spring system similar
to Zhuang and Canny.5 The cube’s bottom is fixed on the
floor and its top is twisted using a high-amplitude exter-
nal force. In Figure 7b, constraint forces that preserve
the global volume aren’t modified. The proposed
method successfully simulated the large deformations
without any distortions and our simulated animation is
close to the result of Zhuang and Canny.5 Table 2 shows
the performance measurement for example simulations
used in this article, including a collision handling. 

Figures 7d and 7e show the results of muscle defor-
mations with and without skin when flexing the forearm
at the elbow joint. All 12 muscle segments are simulated
with the volume-preserved mass-spring system and it’s
done at an interactive rate. This brachial flexion exam-
ple demonstrates that the proposed method can enhance
the realism of local deformation. The deformation zone
modifies the Lagrange multiplier to represent the plau-
sible shape change of muscle deformation and to model
the anisotropy of human muscle. 

Conclusion and discussion
Despite the simplicity and efficiency of a mass-spring

system, it includes visually apparent flaws when model-
ing deformable objects because of the lack of effective
volume preservation. We present a fast and robust vol-
ume preservation technique using an implicit constraint
enforcement scheme and a deformation zone technique
to achieve the local volume-preserved deformation by
automatically distributing a weight vector. 

Because the computational cost of the volume preser-
vation is virtually negligible, we can achieve a realistic
animation similar to an FEM at a fraction of the cost. In
addition, our approach is independent from the geomet-
ric structure of an object and underlying physical model.
Our focus is on the fast object level of volume preserva-
tion for a mass-spring system and this approach can
make a significant impact on many applications such as
games, surgical simulation in virtual environments,
human tissue modeling, character animation, and other
VR-based applications that require real-time interaction.

The current deformation model is a passive simula-
tion where external forces initiate motions. In the future,
more studies on the mechanical properties of human
tissue and muscle as well as advanced self-actuated mus-
cle deformation schemes are needed to further enhance
the visual realism. ■
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