
Geometric Awareness for Interactive Object Manipulation

Min-Hyung Choi James F. Cremer

Department of Computer Science
University of Iowa

Iowa City, IA 52242

Abstract
This paper describes formulation and management of
constraints that, combined with a nonlinear optimization
algorithm, enable interactive geometrically aware ma-
nipulation of articulated objects. Going beyond purely
kinematic or dynamic approaches, our solution method
directly employs geometric constraints to ensure non-
interpenetration during object manipulation. We present
the formulation of the inequality constraints used to en-
sure nonpenetration, describe how to manage the set of
active inequality constraints as objects move, and show
how these results are combined with a nonlinear opti-
mization algorithm to achieve interactive geometrically
aware object manipulation. Our optimization algorithm
handles equality and inequality constraints and does not
restrict object topology. It is an efficient iterative al-
gorithm, quadratically convergent, with each iteration
bounded by

���������	��
���
, where

��������
��
is the number of

non-zeros in

, a Cholesky factor of a sparse matrix.

Key words: object manipulation, geometry awareness,
constraints, nonlinear optimization, Cholesky

1 Introduction

Interactive object manipulation is typically achieved in
computer graphics applications via direct manipulation of
degrees of freedom or inverse kinematics algorithms. The
importance of efficient, convenient, and natural manipu-
lation techniques is growing. As 3D virtual environment
applications mature, the creation and arrangement of real-
istic scenes cluttered with large numbers of objects, many
of them in contact, remains a significant challenge.

A serious deficiency of many object manipulation tech-
niques is that they are not geometrically aware. That is,
although they maintain kinematic constraints, they do not
enforce the basic geometric constraint that objects should
not interpenetrate. A geometrically aware object manip-
ulation system enforces both kinematic and geometric
constraints, allowing manipulation in which objects may
come into contact but do not interpenetrate. A lack of
geometry awareness can be crippling in cluttered envi-
ronments where contact and interaction between objects

is natural and desirable.

An effective object manipulation system should satisfy
several requirements. First, it must be fast enough to be
used interactively for general object configuration topolo-
gies and a variety of constraint types. It should include
geometry awareness so that object behavior during ma-
nipulation is plausible. The system should be extensible
to new object and constraint types. And, the underlying
manipulation algorithms should produce reasonable be-
havior in under- and over-determined situations.

This paper presents our approach to geometrically
aware interactive object manipulation. We formulate and
manage a set of inequality constraints to prevent interpen-
etration during manipulation. The manipulation problem
is cast into a nonlinear optimization problem involving
equality and inequality constraints. Our solution method
does not restrict object topology, and uses unreduced co-
ordinates for flexibility and scalability. Interactive speed
results from taking advantage of the special structure and
sparsity of the problem. Constraint management keeps
the number of active constraints small to reduce system
size and enhance overall efficiency. Section 2 presents
background material and related work. Section 3 presents
the formulation of the inequality constraints providing
geometry awareness, and discusses management of the
constraint set. In section 4, we describe our interactive
object manipulation system, and the formulation of the
nonlinear optimization problem that lies at the heart of
the manipulation algorithm. Section 5 details the method
for efficiently solving the optimization problem.

2 Background and Related Work

The importance of sophisticated 3D manipulation tech-
niques is based partly on a desire for interaction that looks
and feels similar to real world manipulation. To provide
intuitive interaction that resembles interaction with real
world objects, we provide a simple metaphor: grab any
part of the object and drag or pull it to the intended con-
figuration, letting the system take care of the underlying
computation.

The inverse kinematics problem has been studied ex-

Figure 1: A challenging manipulation problem

tensively in the robotics field, but much of the effort is
concerned with the functionality of particular manipula-
tors, sometimes with a few redundant degrees of free-
dom. In computer graphics, there have been a number
of attempts to address the problem of manipulation of re-
dundant articulated objects. Jack[4] uses a reduced co-
ordinate system and nonlinear optimization techniques to
solve inverse kinematics for a human model. Zhao[16]
added collision avoidance to Jack but this simple aug-
mentation using bounding spheres and cylinders does not
support precise geometry awareness to allow contact or
prevent interpenetration between objects in close proxim-
ity. Gleicher’s[9] differential method casts the graphical
manipulation problem to a nonlinear optimization prob-
lem, linearizing it to make the problem easier to solve.
Snyder[13] addresses geometry awareness but not for ar-
ticulated objects. The work investigated the generation
of stable non-interpenetrating configurations of curved-
surface objects.

Interactive dynamics simulation may also be used as
a basis for object manipulation[11, 5, 14]. Interactive
dynamics simulation can provide fairly physically accu-
rate results, accounting for friction and inertia in addi-
tion to geometry awareness. As good haptic feedback
interfaces are developed, advanced interactive dynamics
approaches should prove quite attractive. We chose to in-
vestigate a purely kinematic approach because at least for
some applications, dynamics is unwarranted and raises
as many problems as it addresses. For instance, the ad-
ditional quantities (e.g., force and inertia) involved lead
to generally more complex and less efficient algorithms.
Furthermore, an advantage of a kinematics approach is
that intermediate states in a manipulation do not need to
be dynamically plausible. Our primary goal is to give
users more manipulation control and to get reasonable re-
sults quickly.

Figure 1 shows initial and final configurations of a

challenging problem in human figure manipulation: sit-
ting on a chair. A good manipulation system would allow
users to interactively drag the human figure from a stand-
ing to a sitting position, automatically allowing contact
but preventing penetration between the human and the
chair.

3 Geometry Awareness

To incorporate geometry awareness into the manipula-
tion system, robust and very efficient collision detec-
tion and nearest feature identification methods must be
tightly integrated with our nonlinear optimization algo-
rithm. Most collision detection packages do not meet the
needs of manipulation systems; some provide simple “in-
terpenetrating/not interpenetrating” results, while others
compute minimum distances without robustly identify-
ing nearest features. We use a new geometric comput-
ing system developed by Mirtich[12] that provides very
fast collision detection, distance computation, and nearest
feature identification. The system includes hierarchical
bounding volume methods similar in style to those used
in OBBTree[10], combined with hierarchy optimization
techniques, and efficient nearest distance witness identi-
fication algorithms.

Assuming that the geometry system provides, at each
iteration, either a report of interpenetration, or near-
est feature witnesses, geometry awareness is achieved
through formulation of appropriate inequality constraints
to prevent interpenetration, and management of a set of
currently active constraints.

3.1 Constraint Formulation
At each step in which there is no interpenetration, the ge-
ometry system computes and reports a nearest features
witness 1 for pairs of objects that are in close proxim-
ity. A nearest features witness is one of six types: (1)
vertex-face, (2) vertex-edge, (3) vertex-vertex, (4) edge-
edge, (5) edge-face, and (6) face-face. As detailed in
Mirtich[12], if ��� and ��� are features (vertex, edge, or
face) from disjoint convex polyhedra, and points ��� on
��� and ��� on ��� are the closest points between ��� and
��� , then ��� and ��� represent the closest features wit-
ness if ��� lies in the Voronoi region of ��� and ��� lies in
the Voronoi region of ��� . 2

Given a nearest features witness, our goal is to prevent
subsequent feature interpenetration by formulating an ap-

1For convex polyhedra, only one nearest features witness is needed.
Our approach also works for nonconvex polyhedra, as long as the ge-
ometry system can report multiple near rather than nearest features , but
we limit the presentation here to convex objects.

2For a feature � on a convex polyhedron, the Voronoi region is the
set of points outside the polyhedron that are as close to F as to any other
feature on the polyhedron. Voronoi planes are the boundary planes that
separate neighboring Voronoi regions.

propriate inequality constraint to include in the nonlinear
optimization problem we solve during manipulation. We
consider each case in turn:

Vertex-face

Figure 2: Vertex-Face condition

The vertex-face case is simple; a point-plane inequality
constraint is sufficient to prevent interpenetration. Figure
2 shows a vertex is inside of a Voronoi region of a face.
The non-penetration inequality is

���������
	
(1)

where
���� ��� ��� and

���
is some point on the plane of

the face. This constraint is quadratic because N and P are
actually both functions of object position and orientation.

Vertex-edge
For the vertex-edge case, a separating plane is used to
prevent interpenetration. We choose a plane that contains
the witness edge and has normal equal to the average of
the normal vectors of faces adjacent to the edge. Figure 3
illustrates the vertex-edge case from two different point
of view. The separating plane does not allow the ver-
tex to move to every penetration-free position, and may
thus appear to overly constrain movement. It is impor-
tant to realize that this is not the case. Before reaching
the boundary of the constraint region, the nearest feature
witness must change from the vertex-edge to some other
case. For instance, if the vertex crosses a Voronoi plane
on the way toward the separating plane, the geometry sys-
tem will detect a change in closest feature witnesses and
the constraint set will be updated appropriately. Note also
there are many valid separating planes. A plane is valid
if it contains the edge and positive dot products exist be-
tween its normal and the normals of both Voronoi bound-
ing planes of the edge.

Thus, as in the vertex-face case, the vertex-edge case is
handled with an inequality constraint of the form

�������
�
.

Vertex-vertex
Similar to the vertex-edge case, a separating plane
through one vertex, � , is used to prevent interpenetration
as shown in Figure 4. Again, note that many valid sepa-
rating planes exist. A valid separating plane must simply
have a normal,

�
, such that a ray

� � 	 ��� , originating at the
vertex and having direction equal to the normal vector,
must lie completely in the vertex Voronoi region. We can
simply choose a separating plane normal by averaging the
normals of the faces adjacent to the vertex. In certain un-
usual cases, this averaging can yield a ray

� � 	 ��� that lies
close to the vertex Voronoi region boundary. It will al-
ways be inside, however, and thus valid.

For this case we again formulate a point-plane inequal-
ity constraint:

���������
. And again, while the sepa-

rating plane does not permit direct movement into some
regions, it permits full movement to the extent required
by the vertex-vertex case. When the witness changes
the constraints will change appropriately to permit move-
ment into other regions.

Edge-edge
For the edge-edge case, constraints are formulated in
terms of intersection points between one edge and ex-
tended planes of the adjacent faces of the other edge. Fig-
ure 5 depicts an edge-edge case, involving egdes ��� and
��� . Let � � � and � � � be extended planes of the ad-
jacent faces of � � . Edge-edge penetration occurs when
� � intersects the faces adjacent to � � . Thus, to pre-
vent intersection we can simply prevent one of those situ-
ations. We formulate another separating plane constraint
that requires that the intersection of the extended line �

containing � � and, say, � � � , occurs on the same side of
the separating plane as � � ’s Voronoi region. The sepa-
rating plane is chosen exactly as in the vertex-edge case.
Note that it is possible for � � to penetrate the other ob-
ject while satisfying the constraint. However, this situa-
tion will not be reached in the edge-edge case because a
change in nearest witness type will occur before reaching
this situation.

So, the edge-edge case is handled by another point-
face inequality constraint. Here, the constraint is slightly
more complicated since the point is not a specific point
on one object, but is defined as the intersection point be-
tween �
 and � � � . This point changes as objects move
and therefore is is represented analytically in the equation
rather than being explicitly computed at iterations of the
algorithm. The form of the constraint is

� �
�! ��"$#�%'&(#*)+",!$- � � � � �.-*/0"1&2!$3�#4-'576 �

Face-face and Edge-face
Edge-face and face-face witnesses occur only when the
nearest features are an edge or face parallel to a face of

Figure 3: Vertex-Edge condition

Figure 4: Vertex-Vertex condition

the other object. It is degenerately rare when the nearest
distance is not zero, but routine when objects are in con-
tact. Both cases are handled by reducing them to a set
of vertex-face and/or edge-edge witnesses. For example,
in the edge-face case, if both edge vertices are inside the
Voronoi region of the face, two vertex-face witnesses are
used. If the edge penetrates one of the Voronoi boundary
planes of the face, the case is reduced to one edge-edge
case and one vertex-face case.

3.2 Management of Active Constraints

As objects move and nearest features witnesses change,
our system adds and removes inequality constraints to re-
flect the current situation. To ensure efficiency, it is im-
portant to keep the set of active inequality constraints as
small as possible.

Geometry queries are done at each iteration of the al-
gorithm to determine nearest features or detect interpen-
etration. Two approaches may be used for deciding when
to add inequality constraints corresponding to near fea-
tures. The system can wait until interpenetration occurs,
revert to the state from the previous iteration, and formu-
late and add to the constraint set the appropriate inequal-
ities based on nearest features. The inequalities will pre-
vent re-interpenetration of the offending features when
the solution step is retried. Alternatively, the system can
preventatively add inequalities once nearest feature dis-
tances fall below some threshold. Our system employs
both approaches; it preventatively adds constraints when
features get close, but also includes the backup-upon-
interpenetration technique. (This can enhance robustness
when we employ large step sizes in iterations of manipu-

Figure 5: Edge-edge condition

lation algorithm during, for instance, debugging or other
situations where we desire especially fast but perhaps less
precise performance).

Inequalities are removed from the active constraint set
under two conditions, one representing a required re-
moval, the other an optional removal. Required removal
occurs when nearest feature witnesses change; the sys-
tem removes the corresponding inequality already in the
constraint set and adds a new one as indicated above. In-
equalities may be optionally removed, to keep the con-
straint set small, when the distance corresponding to a
nearest feature witness grows beyond some threshold.

Maintaining a minimal number of active constraints
at all times results in small, more efficiently solvable
constraint sets for the optimization algorithm. On the
other hand, frequent modification of active constraint set
can adversely affect overall performance. Our solution
method incorporates a separation of symbolic and numer-
ical computation components to enhance performance
when several continuous steps are taken without chang-
ing the system structure. Constraint addition and deletion
can alter the block structure of the system and necessitate
further symbolic manipulation, as covered in section 5.1.
Managing both the size and frequency of modification of
active inequality constraint set in a way that achieves the
best overall system performance is an area we are still
investigating.

4 Geometrically Aware Object Manipulation Sys-
tem

In this section, we present an overview of our manipula-
tion system. We describe object representations, the for-
mulation of a nonlinear optimization problem represent-
ing manipulation, and user interaction schemes supported

by our implementation.

4.1 Object Representation and Coordinates
Object representations fall into two general categories,
reduced coordinates and unreduced, or full, coordinates.
Reduced coordinate approaches describe objects using
minimal sets of state variables, corresponding in size to
the number of available degrees of freedom. With re-
duced coordinate approaches, constraint drift does not oc-
cur, but it is relatively difficult to modify the constraint set
on-line and efficiently reparameterize it to new minimal
coordinates. In contrast, full-coordinate methods express
system state using a maximal set of coordinates corre-
sponding to degrees of freedom of objects when uncon-
strained. Constraint maintenance is achieved by explic-
itly accounting for constraints in the solution methods.

We describe each object’s state with 7 variables:%�� � % � � % � for the center of the object’s local reference
frame, and Euler parameters

#�� � #�� � # � � # � for the object’s
orientation. A state vector � which combines all ob-
ject’s 7 state variables uniquely define the state of entire
configuration. Employing full coordinates and explicit
constraints facilitates development of a flexible algorithm
that supports on-line constraint set changes and that can
be implemented cleanly and modularly.

4.2 Interactive Manipulation as a Nonlinear Opti-
mization Problem

Instead of searching for a solution of the inverse kine-
matics problem, we cast object manipulation as a con-
strained nonlinear optimization problem. Considering the
fact that there is an infinite number of solutions for the
under-determined case and we want to get a reasonably
close solution when an exact solution is not available,
nonlinear optimization has a number of advantages. De-

pending on the situation, we can experiment with differ-
ent objective functions while still maintaining kinematic
constraints. And, incorporation of inequality constraints
turns out not to be very difficult in our optimization ap-
proach. Equation 2 represents an objective function to
achieve the “Principle of Least Astonishment”[6] which
suggests the system should move as little as possible from
the previous configuration.

� � � � � �
�
� � � ��� ��� (2)

Combining this objective function � � � � with kinematic
equality constraints, ��� � � � , and inequality constraints,
��� � � � , for geometric awareness, we formulate the ob-
ject manipulation problem as the nonlinear optimization
problem:

	 ! � ! 	 !�
 # � � � � � � �� 	 � � 	���� 	 � �& � " � � � � � � ��� 	 ! � � ��� 	���� 	�� � � ��� 	 � � ���
��� � � � � � 	 	�������	 � � ��� � 	

(3)

Equality and Inequality Constraints
The inequality constraints used to achieve geometry
awareness were described in Section 3. Goal and kine-
matic constraints are usually equality, though we employ
inequality goal constraints in some cases. Sample con-
straints include:

� spherical joint :
% � ��� �) � � % � � � �) � � � , where� � is a rotation matrix dependent on the Euler pa-

rameters and
) � is a body-fixed vector describing the

joint attachment point.

� point - surface attachment:
� � � �� % � ��� �) � � � � � � ��

, where
� � is the surface normal and � � a point on

the surface.

� point goal:
% � ��� �) ��� � �"!$#&% � �

, where � �&!$#&% is
the goal position for the specified object 1 point.

4.3 Interactive Object Manipulation Interface
The system supports three interaction techniques, each
appropriate in different situations:

For Dragging, the system continuously polls the
mouse location and uses the polled locations as interme-
diate goals. In this mode, we require the algorithm to
quickly achieve a moderately accurate solution at each in-
termediate goal, with a more accurate solution at the end
of move. For smooth interaction, the system must provide
intermediate goal solutions within the interval between
mouse polls (typically, approximately 0.1 second).

Pull to goal may be used to specify goal trajectories.
The user specifies a desired path for points on the manip-
ulated object. Based on the path, the system generates

Figure 6: Snapshot from interactive object manipulation
interface

closely spaced intermediate goals and solves for them,
animating the intermediate results.

In the Solve for goal scheme, a user directly specifies
desired final goal constraints. The system solves for and
displays a configuration meeting the constraints. Objects
jump to the new configuration, providing the user no in-
formation about how to reach it from the initial configu-
ration.

The different interaction schemes involve solving non-
linear optimization problems using different step sizes
and varying distances between intermediate goals. “Con-
straint drift” is not a problem since constraints are sat-
isfied within default or user-specified tolerances at each
intermediate goal, as well as at the final goal.

Figure 6 is a snapshot from the user-interface of our
system handling a closed-loop articulated objects. The
system allows users to assemble complex figures by
adding and deleting constraints interactively. The soft-
ware is modular and supports comparison of a variety of
object manipulation algorithms. In addition to the new
methods described in this paper, the software includes
implementations of several other methods.

5 Solution Method for the Nonlinear Optimization
Problem

The key challenge for achieving interactivity is efficiently
solving the constrained nonlinear optimization problem.
Our method converts the optimization problem into a sys-
tem of nonlinear equations. We can exploit special as-
pects of the formulation to achieve the needed perfor-
mance. First, the system is sparse and block structured.
Second, each solution step begins from a starting point at
which all constraints except the goals are satisfied.

Assuming that inequality constraints have been re-

placed by equalities as described in Section 5.3, the first
order necessary condition for the existence of a local
minimizer ��� of the objective function of Equation 2 re-
quires the existence of a Lagrange multiplier

���
satisfy-

ing Karush-Kuhn-Tucker(KKT) condition� �
 � � � 	 � � � ��� � � � � � ��� � � � � � � � � � � � (4)

Combining this with the original constraints yields

�
	 ���� �� ��� ��! ��� � � ��� � � � �
� � � � � � � � (5)

where � is the Jacobian of the constraints � � . The non-
linear optimization problem has become a well-balanced
system of

� � 	 equations in
� ��	 variables. To solve

the nonlinear system, we use Newton’s method which
converges quadratically if the starting point is within a
certain range[8]. � � ����� ��� �

��� � � (6)

� ��� � � � 	 �� � 	 � ��� � � � � � � (7)

Since we have a good starting point, usually less than 3
iterations of system solving suffices the termination con-
dition that requires 2 norm of all constraint errors should
be less than 1.0E-5.

The main issue is to solve linear system 7 efficiently.
If we rewrite linear system 7 as� � ��� �

��� � � � ��� � � � ��� �� � � (8)

and multiply the upper row by � , then� �� ���!� � � � � � � �
��� � � � � � (9)

leading to �!� � � � � � � � ��� � � (10)

We call equation 10 a normal equation of the linear sys-
tem 8. This normal-equation-based method has a num-
ber of desirable properties. First, assuming that � has
full rank, �"� � is symmetric and positive definite. Fur-
thermore, the size of the system is usually significantly
smaller than the original linear system 7. One drawback
is that even if � is sparse, �!� � can be completely dense
depending on the topology of the bodies. For example, a
star topology, in which every object is constrained with a
central object, has completely dense �!� � even when � is
sparse, due to the existence of single dense column.

We showed how to alleviate the problem of dense
columns in the normal equation approach by employ-
ing the modified Schur complement method[7]. When
dense columns occur, we rearrange and expand the sys-
tem. When there are no dense columns, we simply take
advantage of small system size of the normal equation
and use efficient

#�
Cholesky factorization. Studies

show that the Cholesky factorization based on normal
equation method is usually preferred [15] if the upper left
corner block of the linear system 8 is a diagonal matrix.

5.1 Separating Symbolic Factorization from Numer-
ical Computation

To take advantage of sparsity and block structure, we
separate symbolic factorization from numerical compu-
tation. First, row and column orderings are determined
such that the fill-in in the Cholesky decomposition

is

minimized. The problem of choosing an ordering that
minimizes fill-in is NP-hard[2]. Our system uses the ap-
proximate minimum degree heuristic (AMD) proposed
by Davis, Amestoy, and Duff[1]. Second, the non-zero
structure of the Cholesky factor is determined and sparse
storage is allocated accordingly This takes care of index-
ing and associated bookkeeping so that the actual numer-
ical factorization takes place only for the non-zero ele-
ments. If the structure of �!� � is unchanged during the
iterations, we can do the symbolic decomposition just
once, repeating only the numerical part thereafter.

5.2 The Push Cholesky Algorithm
After the symbolic phase that concentrates about the piv-
oting rule and pivoting order, the numerical phase solves
a sparse symmetric system. Our sparse factorization
method is based on the push Cholesky algorithm[2].

�$ %
denotes the & th column of

and

(' �*) �,+ % denotes the & th
column from row

!
to row

�
.

1. for j = 1, ... m
2.

 ���.- �0/
 ���
3.

1' � � �) 2 +�� - �
1' � � �) 2 +�3
 ���
4. for k = j + 1, ... m
5. if

#% ��4� �
6.

5' %6� �) 2 + % - �
5' %7� �) 2 + % �
 % �
5' %7� �) 2 +��
THE PUSH CHOLESKY ALGORITHM

The push Cholesky algorithm is categorized as a column-
Cholesky factorization in which the columns of

are

computed in turn, one by one. Although the algorithm is
presented in columns, the actual computation is usually
performed for few elements in a column. For example,
in step 6, only the non-zero components of

�' %7� �) 2 + �
are subtracted. However, since a column is used to up-
date another column, when the non-zero structures of two
columns,

1$ � and

1$ %

, don’t correspond, we pay a book-

keeping penalty in the sparse algorithm. A supernode
technique is used to get around this problem and even-
tually to achieve faster sparse solving [2]. A supernode is
a set of adjacent columns in

having the same non-zero

pattern below the diagonal of the previous column. By
regrouping columns using the supernode technique, all
columns in the supernode update exactly the same po-
sition in the subsequent columns. The supernode also
makes loop unrolling possible [3]. With most common
memory architectures having at least 2 levels of cache,
loop unrolling leads to speedup by taking advantage of
locality of memory access. Since the loop from step 4
to step 6 is performed only for few non-zero elements
in a column, the asymptotic complexity of this sparse
Cholesky factorization is

���������	��
 � �
[2], where

����� ��
 �
is the number of non-zeros in

.

5.3 Inequality Constraints

A common way to handle inequality constraints in non-
linear optimization is to add a logarithmic barrier func-
tion. As in 11, we take the logarithm of all inequality
constraints and subtract the resulting terms from the orig-
inal objective function.

	 ! � ! 	 !�
 # � � � � � ��� ���������	��� � � � �& � " � � � � � � � �! � � ��� 	 ��� 	 � � � ��� 	 � � � � 	 	 ��� ��	 � � ��� � 	 (11)

If any inequality constraint is violated, the log func-
tion goes to negative infinity and, consequently, objective
function goes to the positive infinity. For the Newton’s
direction, we need

� � and the linear system becomes

��
 ��� �
��� � � � � �� � � � � � �� � �

 ��� � � � � � � ���� ����� ' � + � � � � � � � � � � � � �
� �� � ' � + � � ��� � � ���

(12)

where
 represents a derivative of the objective function.
An implicit assumption is that the starting point must sat-
isfy all inequality constraints. There are two main disad-
vantages of this approach. An appropriate coefficient for
the logarithmic barrier function must be selected to en-
sure convergence and numerical stability. Furthermore,
choosing an efficient sparse linear system solving algo-
rithm may depend on the structure of the upper left cor-
ner block
 . The normal equation method requires an
inverse of
 . Since
 is a general symmetric matrix,
it is costly to invert.
 becomes diagonal matrix only if
all the inequality constraints are simple bounds. A mod-
ified nonlinear optimization formulation 13 shows how
to eliminate problems related to the barrier function ap-

proach.

	 ! � ! 	 !�
�# � � � 	�� �& � " � � � � � � ���
��� � � � � � �� � � (13)

All inequality constraints are converted into equality con-
straints by introducing new variables

�
. The square of

�
ensures that ��� � � � is greater than or equal to zero. Since
we don’t use logarithmic barrier function, the upper left
block
 becomes an identity matrix. Therefore, the push
Cholesky algorithm based on the normal equation formu-
lated for systems with equality constraints can be used
directly. The number of variables increases by the num-
ber of active inequality constraints.

5.4 Over-determined case
Conflicting or unreachable goals yield singular constraint
matrices. Singular value decomposition methods can be
used to solve such problems, but are expensive. In some
cases, we alter the objective function to help the system
find a reasonably close solution in a least-squares sense.
The objective function then becomes a least squares sum-
mation of the Euclidean distance between goal positions.
The main disadvantage of this approach is that the over-
all structure of the system has to be modified to accom-
modate new objective function. In other cases, we use
a different technique, called damping to make the matri-
ces non-singular. By altering �!� � with small diagonal
elements of � � , we can avoid trying to solve a singular
system.

From a user interface point of view, over-determined
cases can be avoided or solved by providing users a
chance to evaluate the situation. Since users get contin-
uous feedback, when there are conflicting goals or the
goals can’t be reached, users might know how to guide
the the system around the problem. Similar user inter-
face scheme can be applied when the system is trapped in
local minima.

6 Results and concluding remarks

In this paper, we described how to formulate and manage
a set of inequality constraints that enables 3D object ma-
nipulation with geometry awareness. Based on the near-
est feature witness and interpenetration information re-
ported by a geometry system, inequality constraints for
preventing interpenetration are formulated. The geomet-
ric constraint monitoring system updates inequality con-
straints as objects moves and maintain active constraints
set as small as possible. Combined with kinematic and
goals constraints, the object manipulation problem is cast
as a nonlinear optimization problem. We developed an
efficient sparse algorithm for solving the optimization

problem. Based on these results, we implemented a pro-
gram that allows users to manipulate complex object con-
figurations interactively. The performance of the manip-
ulation algorithm scales well with the number of objects
and active equality and inequality constraints; the push
Cholesky algorithm performs well and scales nearly lin-
early, for instance. Tests were run on an SGI O2 work-
station with a 175MHz R10000 processor and a PC with
400MHz Pentium II processor. A test configuration with
212 variables and 1455 non-zero elements, roughly 96%
sparse, takes less than 7.5ms per solution on the Pentiu-
mII. System performance does not degrade in the pres-
ence of closed loop configurations or inequality con-
straints.

Some of our current work aims at developing more
powerful and appropriate interaction metaphors for ma-
nipulating complex 3D objects. At present, our sys-
tem employs the mouse to define and manipulate simple
point-based goals and trajectories. The human figure ma-
nipulation “challenge problem” of Figure 1 involves con-
tact over extended regions and is tedious to carry out us-
ing simple manipulation metaphors. Furthermore, it can-
not even be solved fully adequately without accounting
for object deformability. Extending geometrically aware
object manipulation to include deformability is thus an
important remaining challenge.

Acknowledgements
Partial support for this work was provided by Office
of Naval Research grant N00014-96-1-0269. We thank
Yinyu Ye and Xiong Zhang for helpful advice on the for-
mulation and solution of optimization problems.

7 References

[1] Patrick R. Amestoy, Timothy A. Davis, and Iain S.
Duff. An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and
Applications, 17(4):886–905, October 1996.

[2] E. D. Andersen and K. D. Andersen. The APOS
linear programming solver: an implementation of
the homogeneous algorithm. Technical report, De-
partment of Management, Odense University, Den-
mark, March 1995.

[3] E. D. Andersen, J. Gondzio, C. Mészáros, and
X. Xu. Implementation of interior-point methods
for large scale linear programs. In T. Terlaky, ed-
itor, Interior point methods of mathematical pro-
gramming, pages 189–252. Kluwer, Dordrecht, The
Netherlands, 1996.

[4] Norman I. Badler, Cary B. Phillips, and Bon-
nie Lynn Webber. Simulating Humans: Computer

Graphics Animation and Control. Oxford Univer-
sity Press, New York, 1993. ISBN 0-19-507359-2.

[5] D. Baraff. Linear-time dynamics using Lagrange
multipliers. Computer Graphics (SIGGRAPH 96),
30(2):137–146, 1996.

[6] Lee Alton Barford. A graphical, language-based
editor for generic solid models represented by
constraints. Technical Report TR87-813, Cornell
University, Computer Science Department, March
1987.

[7] Min-Hyung Choi and James F. Cremer. Interac-
tive manipulation of articulated objects with ge-
ometry awareness. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation,
May 1999.

[8] R. Fletcher. Practical Methods of Optimization, ��� �� ��� John Wiley, New York, 1987.

[9] M. Gleicher. Differential Approach to Graphical
Manipulation. Ph. D. thesis, Carnegie Mellon Uni-
versity, 1994.

[10] Stefan Gottschalk, Ming Lin, and Dinesh Manocha.
OBB-Tree: A hierarchical structure for rapid inter-
ference detection. Computer Graphics (SIGGRAPH
96), 30(2):171–180, 1996.

[11] Brian Mirtich. Rigid body contact: Collision de-
tection to force computation. Technical Report TR-
98-01, Mitsubishi Electrical Research Laboratory,
1998.

[12] Brian Mirtich. V-Clip: Fast and robust polyhedral
collision detection. ACM Transactions on Graphics,
17(3):177–208, July 1998.

[13] John M. Snyder. An interactive tool for placing
curved surfaces without interpenetration. Computer
Graphics (SIGGRAPH 95), 29(2):209–218, 1995.

[14] Andrew Witkin, Michael Gleicher, and William
Welch. Interactive dynamics. In Symposium on In-
teractive 3D Graphics, pages 11–21, March 1990.

[15] Y. Ye and E. D. Andersen. On a homogeneous algo-
rithm for the monotone complementarity problem.
Technical report, Department of Management Sci-
ences, The University of Iowa, 1997.

[16] Xinmin Zhao and Norman Badler. Near real-time
body awareness. In Computer Aided Design, 1994.

