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Abstract
This paper describes formulation and management of constraints, and a nonlinear optimization algorithm
that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely
kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non-
interpenetration during object manipulation. We present the formulation of the inequality constraints used to
ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show
how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware
object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict
object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by
O(nnz(L)), where nnz(L) is the number of non-zeros in L, a Cholesky factor of a sparse matrix.
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1. Introduction

Interactive object manipulation is typically achieved in com-
puter graphics applications via direct manipulation of de-
grees of freedom or inverse kinematics algorithms. The im-
portance of efficient, convenient, and natural manipulation
techniques is growing. As 3D virtual environment applica-
tions mature, the creation and arrangement of realistic scenes
cluttered with large numbers of objects, many of them in
contact, remains a significant challenge.

A serious deficiency of many object manipulation tech-
niques is that they are not geometrically aware. That is, al-
though they maintain kinematic constraints, they do not en-
force the basic geometric constraint that objects should not
interpenetrate. A geometrically aware object manipulation
system enforces both kinematic and geometric constraints,
allowing manipulation in which objects may come into con-

tact but do not interpenetrate. A lack of geometry awareness
can be crippling in cluttered environments where contact and
interaction between objects is natural and desirable.

An effective object manipulation system should satisfy
several requirements. First, it must be fast enough to be
used interactively for general object configuration topologies
and a variety of constraint types. It should include geome-
try awareness so that object behavior during manipulation
is plausible. The system should be extensible to new object
and constraint types. And, the underlying manipulation al-
gorithms should produce reasonable behavior in under- and
over-determined situations.

This paper presents our approach to geometrically aware
interactive object manipulation. We formulate and manage a
set of inequality constraints to prevent interpenetration dur-
ing manipulation. The manipulation problem is cast into a

c
 The Eurographics Association and Blackwell Publishers 2000.Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Min-Hyung Choi and James F. Cremer / Geometrically-Aware Interactive Object Manipulation

nonlinear optimization problem involving equality and in-
equality constraints. Our solution method does not restrict
object topology, and uses unreduced coordinates for flexi-
bility and scalability. Interactive speed results from taking
advantage of the special structure and sparsity of the prob-
lem. Constraint management keeps the number of active
constraints small to reduce system size and enhance over-
all efficiency. Section 2 presents background material and
related work. Section 3 presents the formulation of the in-
equality constraints providing geometry awareness, and dis-
cusses management of the constraint set. In section 4, we
describe our interactive object manipulation system, and the
formulation of the nonlinear optimization problem that lies
at the heart of the manipulation algorithm. Section 5 details
the method for efficiently solving the optimization problem.

2. Background and Related Work

The importance of sophisticated 3D manipulation tech-
niques is based partly on a desire for interaction that looks
and feels similar to real world manipulation. To provide in-
tuitive interaction that resembles interaction with real world
objects, we provide a simple metaphor: grab any part of the
object and drag or pull it to the intended configuration, let-
ting the system take care of the underlying computation.

The inverse kinematics problem has been studied exten-
sively in the robotics field, but much of the effort is con-
cerned with the functionality of particular manipulators,
sometimes with a few redundant degrees of freedom. In
computer graphics, there have been a number of attempts
to address the problem of manipulation of redundant artic-
ulated objects. Jack5 uses a reduced coordinate system and
nonlinear optimization techniques to solve inverse kinemat-
ics for a human model. Zhao18 added collision avoidance to
Jack but this simple augmentation using bounding spheres
and cylinders does not support precise geometry awareness
to allow contact or prevent interpenetration between objects
in close proximity. Gleicher’s11 differential method casts the
graphical manipulation problem to a nonlinear optimiza-
tion problem, linearizing it to make the problem easier to
solve. Snyder15 addresses geometry awareness but not for
articulated objects. The work investigated the generation of
stable non-interpenetrating configurations of curved-surface
objects.

Interactive dynamics simulation may also be used as a
basis for object manipulation13; 6; 16. Interactive dynamics
simulation can provide fairly physically accurate results,
accounting for friction and inertia in addition to geome-
try awareness. As good haptic feedback interfaces are de-
veloped, advanced interactive dynamics approaches should
prove quite attractive. We chose to investigate a purely kine-
matic approach because at least for some applications, dy-
namics is unwarranted and raises as many problems as it ad-
dresses. For instance, the additional quantities (e.g., force
and inertia) involved lead to generally more complex and

Figure 1: A challenging manipulation problem

less efficient algorithms. Furthermore, an advantage of a
kinematics approach is that intermediate states in a manipu-
lation do not need to be dynamically plausible. Our primary
goal is to give users more manipulation control and to get
reasonable results quickly.

Figure 1 shows initial and final configurations of a chal-
lenging problem in human figure manipulation: sitting on a
chair. A good manipulation system would allow users to in-
teractively drag the human figure from a standing to a sitting
position, automatically allowing contact but preventing pen-
etration between the human and the chair.

3. Geometry Awareness

The main idea of a geometry awareness is to find out what
objects collide, how they collide, and how we can pre-
vent further penetration by formulating non-penetration con-
straints between them. To incorporate geometry awareness
into the manipulation system, robust and very efficient col-
lision detection and nearest feature identification methods
must be tightly integrated with our nonlinear optimization
algorithm. Most collision detection packages do not meet the
needs of manipulation systems; some provide simple “inter-
penetrating/not interpenetrating” results, while others com-
pute minimum distances without robustly identifying nearest
features. We use Mirtich’s geometric computing system V-
Clip14, that provides very fast collision detection, distance
computation, and nearest feature identification.

Assuming that the geometry system provides, at each it-
eration, either a report of interpenetration, or nearest feature
witnesses, geometry awareness is achieved through formu-
lation of appropriate inequality constraints to prevent inter-
penetration, and management of a set of currently active con-
straints.

3.1. Constraint Formulation

To provide geometry awareness we need to formulate, at
each step, a set of constraints suitable to prevent interpen-
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etration. Rather than exhaustively formulating all possible
feature-feature non-interpenetration constraints, we instead
formulate constraints only for current minimum distance
feature witnesses for nearest object pairs. In the current im-
plementation, given N objects in space, θ(N2) pairwise col-
lision and interpenetration checks are used. Several methods
have been developed to reduce the pairwise operations to
O(NlogN). V-collide12 and I-collide9 perform a fast sweep-
and-prune operation to decide which pairs of bodies are po-
tentially about to collide and penetrate. By using a bound-
ing spheres for quick rejection tests and/or a fast sweep-and-
prune operation, the pairwise operations can be reduced sub-
stantially.

At each step in which there is no interpenetration, the ge-
ometry system computes and reports a nearest features wit-
ness for pairs of objects that are in close proximity. For con-
vex polyhedra, only one nearest features witness is needed.
Our approach also works for nonconvex polyhedra as long as
the geometry system can report nonconvex feature witnesses
and multiple nearby features (rather than unique nearest fea-
tures), but we limit the presentation here to convex objects. A
nearest features witness is one of six types: (1) vertex-face,
(2) vertex-edge, (3) vertex-vertex, (4) edge-edge, (5) edge-
face, and (6) face-face. As detailed in Mirtich14, if F1 and
F2 are features (vertex, edge, or face) from disjoint convex
polyhedra, and points p1 on F1 and p2 on F2 are the clos-
est points between F1 and F2, then F1 and F2 represent the
closest features witness if p1 lies in the Voronoi region of F2
and p2 lies in the Voronoi region of F1. For a feature F on
a convex polyhedron, the Voronoi region is the set of points
outside the polyhedron that are as close to F as to any other
feature on the polyhedron. Voronoi planes are the boundary
planes that separate neighboring Voronoi regions.

Given a nearest features witness, our goal is to prevent
subsequent feature interpenetration by formulating an appro-
priate inequality constraint to include in the nonlinear opti-
mization problem we solve during manipulation. We con-
sider each case in turn.

3.1.1. Vertex-face

The vertex-face case is simple; a point-plane inequality
constraint is sufficient to prevent interpenetration. Figure 2
shows a vertex is inside of a Voronoi region of a face. The
non-penetration inequality is

N �P > 0; (1)

where P =V 1�Pp and Pp is some point on the plane of the
face. This constraint is quadratic because N and P are actu-
ally both functions of object position and orientation. Thus
N (and P) should be N(r;e) where r and e represent position
and orientation respectively as described in Section 4.

3.1.2. Vertex-edge

For the vertex-edge case, a separating plane is used to pre-
vent interpenetration. We choose a plane that contains the

Figure 2: Vertex-Face condition

witness edge and has normal equal to the average of the nor-
mal vectors of faces adjacent to the edge. Figure 3 illustrates
the vertex-edge case from two different point of view. The
separating plane does not allow the vertex to move to every
penetration-free position, and may thus appear to overly con-
strain movement. It is important to realize that this is not the
case. Before reaching the boundary of the constraint region,
the nearest feature witness must change from the vertex-
edge to some other case. For instance, if the vertex crosses
a Voronoi plane on the way toward the separating plane, the
geometry system will detect a change in closest feature wit-
nesses and the constraint set will be updated appropriately.
Note also there are many valid separating planes. A plane is
valid if it contains the edge and positive dot products exist
between its normal and the normals of both Voronoi bound-
ing planes of the edge.

Thus, as in the vertex-face case, the vertex-edge case is
handled with an inequality constraint of the form N �P > 0.

3.1.3. Vertex-vertex

Similar to the vertex-edge case, a separating plane through
one vertex, v, is used to prevent interpenetration as shown
in Figure 4. Again, note that many valid separating planes
exist. A valid separating plane must simply have a normal,
n, such that a ray (v;n), originating at the vertex and hav-
ing direction equal to the normal vector, must lie completely
in the vertex Voronoi region. We can simply choose a sep-
arating plane normal by averaging the normals of the faces
adjacent to the vertex. In certain unusual cases, this averag-
ing can yield a ray (v;n) that lies close to the vertex Voronoi
region boundary. It will always be inside, however, and thus
valid.

For this case we again formulate a point-plane inequal-
ity constraint: N � P > 0. And again, while the separating
plane does not permit direct movement into some regions, it
permits full movement to the extent required by the vertex-
vertex case. When the witness changes the constraints will
change appropriately to permit movement into other regions.
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Figure 3: Vertex-Edge condition

Figure 4: Vertex-Vertex condition

3.1.4. Edge-edge

For the edge-edge case, constraints are formulated in terms
of intersection points between one edge and extended planes
of the adjacent faces of the other edge. Figure 5 depicts an
edge-edge case, involving edges EA and EB. Let EP1 and
EP2 be extended planes of the adjacent faces of EB. Edge-
edge penetration occurs when EA intersects the faces adja-
cent to EB. Thus, to prevent intersection we can simply pre-
vent one of those situations. We formulate another separat-
ing plane constraint that requires that the intersection of the
extended line EL containing EA and, say, EP1, occurs on the
same side of the separating plane as EB’s Voronoi region.
The separating plane is chosen exactly as in the vertex-edge
case. Note that it is possible for EA to penetrate the other ob-
ject while satisfying the constraint. However, this situation

will not be reached in the edge-edge case because a change
in nearest witness type will occur before reaching this situa-
tion.

So, the edge-edge case is handled by another point-plane
inequality constraint. Here, the constraint is slightly more
complicated since the point is not a specific point on one ob-
ject, but is defined as the intersection point between EL and
EP1. This point changes as objects move and therefore is is
represented analytically in the equation rather than being ex-
plicitly computed at iterations of the algorithm. The form of
the constraint is

(EL intersection EP1) outside o f SP

Given the variables from an edge and an extended plane
EP1, the intersection point can be obtained. Consider V p a
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Figure 5: Edge-edge condition

point on an edge EA, Ve a vector along the edge EA, F p a
point on the extended plane EP1, and F pn a normal vector
of the extended plane EP1. The intersection point IP is

IP = V p+
(F p �F pn)� (V p �F pn)

(Ve �F pn)
�Ve (2)

The intersection point IP is constrained to be outside the
separating plane and the inequality constraint is described
with separating plane normal Spn.

(IP�F p) �Spn > 0 (3)

3.1.5. Edge-face and Face-face

Edge-face and face-face witnesses occur only when the near-
est features are an edge or face parallel to a face of the other
object. It is degenerately rare when the nearest distance is
not zero, but routine when objects are in contact. Both cases
are handled by reducing them to a set of vertex-face and/or
edge-edge witnesses. For example, in the edge-face case, if
both edge vertices are inside the Voronoi region of the face,
two vertex-face witnesses are used. If the edge penetrates
one of the Voronoi boundary planes of the face, the case is
reduced to one edge-edge case and one vertex-face case.

3.2. Management of Active Constraints

As objects move and nearest features witnesses change, our
system adds and removes inequality constraints to reflect the
current situation. To ensure efficiency, it is important to keep
the set of active inequality constraints as small as possible.

Geometry queries are done at each iteration of the algo-
rithm to determine nearest features or detect interpenetra-

tion. Two approaches may be used for deciding when to add
inequality constraints corresponding to near features. The
system can wait until interpenetration occurs, revert to the
state from the previous iteration, and formulate and add to
the constraint set the appropriate inequalities based on near-
est features. The inequalities will prevent re-interpenetration
of the offending features when the solution step is retried.
Alternatively, the system can preventatively add inequali-
ties once nearest feature distances fall below some thresh-
old. Our system employs both approaches; it preventatively
adds constraints when features get close, but also includes
the backup-upon-interpenetration technique. (This can en-
hance robustness when we employ large step sizes in itera-
tions of manipulation algorithm during, for instance, debug-
ging or other situations where we desire especially fast but
perhaps less precise performance).

Inequalities are removed from the active constraint set un-
der two conditions, one representing a required removal, the
other an optional removal. Required removal occurs when
nearest feature witnesses change; the system removes the
corresponding inequality already in the constraint set and
adds a new one as indicated above. Inequalities may be op-
tionally removed, to keep the constraint set small, when the
distance corresponding to a nearest feature witness grows
beyond some threshold.

The geometric constraint monitoring module determines
if there is any change of nearest features. The most typ-
ical constraint management operation is deletion due to a
feature crossing a Voronoi plane. However, when the near-
est features are moving while in contact, there are frequent
changes in primitive inequality constraints within nearest
features. For example when an edge is sliding on a face,
even though the geometric relation remains the same edge-
face case, the primitive constraints may change depending
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Figure 6: Initial contact and subsequent penetration

on what Voronoi plane is crossed by the edge. The geomet-
ric constraint monitoring module detects the changes and re-
formulates appropriate primitive constraints. For each ver-
tex of the edge, the algorithm first checks if the vertex is
inside of the Voroni region of the face. If it is outside of the
Voroni region, the appropriate edge-edge case is determined
and check to see if it is already registered. The algorithm
compares the new edge-edge with pre-registered ones refor-
mulating only if necessary. The search for the new edge-edge
candidate is done incrementally using edge adjacency. In
practice, it usually takes almost constant time. Similar prim-
itive constraint changes can happen for the face-face case
where a face is sliding on another face. The number of prim-
itive vertex-face cases may change as well as the edge-edge
cases.

Maintaining a minimal number of active constraints at all
times results in small, more efficiently solvable constraint
sets for the optimization algorithm. On the other hand, fre-
quent modification of active constraint set can adversely af-
fect overall performance. Our solution method incorporates
a separation of symbolic and numerical computation compo-
nents to enhance performance when several continuous steps
are taken without changing the system structure. Constraint
addition and deletion can alter the block structure of the sys-
tem and necessitate further symbolic manipulation, as cov-
ered in section 5.2. Managing both the size and frequency of
modification of active inequality constraint set in a way that
achieves the best overall system performance is an area we
are still investigating.

3.2.1. Subsequent Penetration of Other Features

As objects move, the nearest features may change, while
maintaining a contact, to a higher dimension: i.e. from
vertex-face to edge-face, or from edge-face to face-face.

Figures 6 shows an example for subsequent penetration
after initial collision. The initial collision is a vertex-face
case and it is handled by a point-plane inequality constraint

between the nearest features. However as the pyramid tilts, it
penetrates further while maintaining the initial contact point
between vertex and face. The geometric non-penetration
constraints based solely on the initial nearest features fail
to prevent subsequent penetration because prior to the pene-
tration, the nearest features are always the contact points.

The main idea of preventing subsequent penetration is
to expand nearest features into a higher dimension that
covers existing contact points as well as new penetration
points. The geometric constraint monitoring module first de-
termines which part of the object is violating the separat-
ing plane. Since objects are convex, the search process for
the new penetrating feature is limited to checking adjacent
vertices. After finding the vertex that violates the separating
plane, the edge containing the original vertex in contact and
the violating vertex becomes the new nearest feature. So, the
relation between two objects is replaced with the edge-face
case and it is decomposed into a set of primitive inequality
constraints depending on the configuration of the edge and
the face. More discussion of this can be found in 8.

4. Geometrically Aware Object Manipulation System

In this section, we present an overview of our manipulation
system. We describe object representations, the formulation
of a nonlinear optimization problem representing manipula-
tion, and user interaction schemes supported by our imple-
mentation.

4.1. Object Representation and Coordinates

Object representations fall into two general categories, re-
duced coordinates and unreduced, or full, coordinates. Re-
duced coordinate approaches describe objects using minimal
sets of state variables, corresponding in size to the number
of available degrees of freedom. With reduced coordinate ap-
proaches, constraint drift does not occur, but it is relatively
difficult to modify the constraint set on-line and efficiently
reparameterize it to new minimal coordinates. In contrast,
full-coordinate methods express system state using a maxi-
mal set of coordinates corresponding to degrees of freedom
of objects when unconstrained. Constraint maintenance is
achieved by explicitly accounting for constraints in the so-
lution methods.

We describe each object’s state with 7 variables: rx; ry; rz

for the center of the object’s local reference frame, and
Euler parameters er; ex; ey; ez for the object’s orientation. A
state vector q which combines all object’s 7 state variables
uniquely define the state of entire configuration. Employing
full coordinates and explicit constraints facilitates develop-
ment of a flexible algorithm that supports on-line constraint
set changes and that can be implemented cleanly and modu-
larly.
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4.2. Interactive Manipulation as a Nonlinear
Optimization Problem

Instead of searching for a solution of the inverse kinematics
problem, we cast object manipulation as a constrained non-
linear optimization problem. Considering the fact that there
is an infinite number of solutions for the under-determined
case and we want to get a reasonably close solution when an
exact solution is not available, nonlinear optimization has
a number of advantages. Depending on the situation, we
can experiment with different objective functions while still
maintaining kinematic constraints. And, incorporation of in-
equality constraints turns out not to be very difficult in our
optimization approach. Equation (4) represents an objective
function to achieve the “Principle of Least Astonishment”7

which suggests the system should move as little as possible
from the previous configuration.

E(q) =
1
2
kq�q0k

2 (4)

Combining this objective function E(q) with kinematic
equality constraints, Φi(q), and inequality constraints,
Φ j(q), for geometric awareness, we formulate the object ma-
nipulation problem as the nonlinear optimization problem:

minimize E(q) q = q1;q2; ::;qn

s:t: Φi(q) = 0; i = 1::meq; j = 1::mineq
Φ j(q)> 0; meq +mineq = m

(5)

Note that Equation 5 is really only an instantaneous
characterization of the overall manipulation problem. The
constraint set is dynamic; it changes as nearest features,
goals, etc., change. The numerical optimization algorithm
we present directly handles only a fixed constraint set. At
a level above the optimization algorithm, our manipula-
tion algorithm updates/reformulates the optimization prob-
lem when constraints change and proceeds by applying the
optimization algorithm to the new problem.

4.2.1. Equality and Inequality Constraints

The inequality constraints used to achieve geometry aware-
ness were described in Section 3. Goal and kinematic con-
straints are usually equality, though we employ inequality
goal constraints in some cases. Sample constraints include:

� spherical joint : r1 +A1c1 � r2 �A2c2 = 0, where Ai is
a rotation matrix dependent on the Euler parameters and
ci is a body-fixed vector describing the joint attachment
point.

� point - surface attachment: n2 � ((r1 + A1c1)� p2) = 0,
where n2 is the surface normal and p2 a point on the sur-
face.

� point goal: r1 +A1c1 � pgoal = 0, where pgoal is the goal
position for the specified object 1 point.

Figure 7: Snapshot from interactive object manipulation in-
terface

4.3. Interactive Object Manipulation Interface

The system supports three interaction techniques, each ap-
propriate in different situations:

For Dragging, the system continuously polls the mouse
location and uses the polled locations as intermediate goals.
In this mode, we require the algorithm to quickly achieve a
moderately accurate solution at each intermediate goal, with
a more accurate solution at the end of move. For smooth
interaction, the system must provide intermediate goal so-
lutions within the interval between mouse polls (typically,
approximately 0.1 second).

Pull to goal may be used to specify goal trajectories.
The user specifies a desired path for points on the manipu-
lated object. Based on the path, the system generates closely
spaced intermediate goals and solves for them, animating the
intermediate results.

In the Solve for goal scheme, a user directly specifies de-
sired final goal constraints. The system solves for and dis-
plays a configuration meeting the constraints. Objects jump
to the new configuration, providing the user no information
about how to reach it from the initial configuration. Note that
the final configuration might not be reachable from the initial
configuration since intermediate states cannot be guaranteed
to be interpenetration free. This is due to the fact that the
constraint set is fixed in this scheme but might not be accu-
rate for the whole range of intermediate configurations.

The different interaction schemes involve solving non-
linear optimization problems using different step sizes and
varying distances between intermediate goals. “Constraint
drift” is not a problem since constraints are satisfied within
default or user-specified tolerances at each intermediate
goal, as well as at the final goal.

Figure 7 is a snapshot from the user-interface of our sys-
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tem handling a closed-loop articulated objects. The system
allows users to assemble complex figures by adding and
deleting constraints interactively. The software is modular
and supports comparison of a variety of object manipula-
tion algorithms. In addition to the new methods described in
this paper, the software includes implementations of several
other methods.

5. Solution Method for the Nonlinear Optimization
Problem

The key challenge for achieving interactivity is efficiently
solving the constrained nonlinear optimization problem. Our
method converts the optimization problem into a system of
nonlinear equations. We can exploit special aspects of the
formulation to achieve the needed performance. First, the
system is sparse and block structured. Second, each solu-
tion step begins from a starting point at which all constraints
except the goals are satisfied.

Since we do not place restrictions on allowable con-
straints, the formulated optimization problem is not neces-
sarily convex and guaranteeing discovery of global minima
becomes problematic. Since our primary goal is interactiv-
ity, we are satisfied as long as we can very quickly find local
minima. Interactivity allows users to easily push the system
out of undesired minima toward other solutions.

Assuming that inequality constraints have been replaced
by equalities as described in Section 5.4, the first order nec-
essary condition for the existence of a local minimizer q�
of the objective function of Equation (4) requires the exis-
tence of a Lagrange multiplier λ� satisfying Karush-Kuhn-
Tucker(KKT) condition

rqL(q�;λ�) =rE(q�)+∑λirΦi(q
�) = 0 (6)

Combining this with the original constraints yields

F

�
q
λ

�
=

�
q�qo � J(q)T �λ = 0

Φi(q) = 0

�
(7)

where J is the Jacobian of the constraints Φi. The nonlinear
optimization problem has become a well-balanced system of
n+m equations in n+m variables.

To solve the nonlinear system, we use Newton’s method
which converges quadratically if the starting point is within
a certain range10.

rF =

�
I �JT

�J 0

�
(8)

rFδ =�F

�
q
λ

�
; qn+1 = qn +δ (9)

Depending on the choice of user interface scheme, and
the distance between intermediate goals, the starting point
may not be in the range that guarantees convergence. If the
intermediate goal is too far away for the numerical system

to converge, the solution algorithm reports back that the in-
termediate goal is inappropriate. Then the trajectory path is
interpolated and subdivided discretely to provide a sequence
of intermediate goals. Nonlinear system solving of equation
(7) in smaller steps is repeated consecutively to simulate the
original large steps. Since Dragging produces very close in-
termediate goals, and correspondingly good starting points,
usually less than three iterations of system solving suffices.
The convergence of the nonlinear system relies at present on
use of a good starting point or interpolated subgoals. This al-
lows us to attack the KKT conditions directly via Newton’s
method. Our algorithmic effort, then, focuses on solving the
relevant linear system efficiently.

The iteration is terminated if the errors for all equations
are less than a user specified error tolerance (in the imple-
mentation the default value is 1.0E-5). The error measure is
computed with the 2-norm of all equations. In graphical ob-
ject manipulation where objects are displayed on a rasterized
screen, a tolerance within one pixel is acceptable in many ap-
plications; simple calculations would allow determining an
error tolerance that ensures display accuracy with one pixel.

The main issue is to solve linear system (9) efficiently. If
we rewrite linear system (9) as�

I �JT

�J 0

��
δ1
δ2

�
=

�
b1
b2

�
(10)

and multiply the upper row by J , then

Jδ1 � JJT δ2 = Jb1
�Jδ1 = b2

(11)

leading to

JJT δ2 =�b2 � Jb1 (12)

We call equation (12) a normal equation of the linear sys-
tem (10). This normal-equation-based method has a number
of desirable properties. First, assuming that J has full rank,
JJT is symmetric and positive definite. Furthermore, the size
of the system is usually significantly smaller than the orig-
inal linear system (9). One drawback is that even if J is
sparse, JJT can be completely dense depending on the topol-
ogy of the bodies. For example, a star topology, in which
every object is constrained with a central object, has com-
pletely dense JJT even when J is sparse, due to the existence
of single dense column.

In this paper, we show how to alleviate the problem of
dense columns in the normal equation approach by employ-
ing the modified Schur complement method. When dense
columns occur, we rearrange and expand the system. When
there are no dense columns, we simply take advantage of
small system size of the normal equation and use efficient
LLT Cholesky factorization. Studies show that the Cholesky
factorization based on normal equation method is usually
preferred 17 if the upper left corner block of the linear system
(10) is a diagonal matrix.
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Figure 8: A dense matrix from the presence of a dense col-
umn

5.1. The dense columns in JJT

In normal equation method, the Jacobian matrix J is multi-
plied to a transpose of itself JT . Although this JJT has de-
sirable properties, an important drawback of this approach is
that it looses sparsity from one dense column in J. For exam-
ple, when all objects are connected to a central object, every
constraint equation has nonzero value at same columns in
the Jacobian matrix where the partial derivatives of the cen-
tral object are located. Figure 8 shows an example of dense
matrix when there is a dense column in J.

However, this dense column occurs relatively rarely or the
size of the system is small. So instead of redesigning the
overall solution method to accommodate this situation, we
treat this as a special case. When there are no dense columns,
we simply take advantage of small system size of the normal
equation and use efficient LLT Cholesky factorization. When
there is a dense column, we employ the modified Schur com-
plement method4 to avoid dense decomposition . The idea of
this method is based on rewriting the normal equation sys-
tem (12) into2
4 (AsAT

s +FFT ) AD F
AT

D �I 0
FT 0 I

3
5
2
4 δ

γ
ρ

3
5=

2
4 b

0
0

3
5 (13)

where As and AD are the sparse and dense columns of J re-
spectively. Since we separate J, there is no guarantee that
AsAT

s is nonsingular4. We choose F such that each column
of F contains only one non-zero to make

AsAT
s +FFT (14)

nonsingular. This demonstrates that FFT only modifies the
diagonal elements of AsAT

s . Therefore the revised matrix can
be solved with the same sparse Cholesky factorization as the
original matrix.

5.2. Separating Symbolic Factorization from Numerical
Computation

If the overall structure of an articulated figure is unchanged
during manipulation, the structure of Jacobian matrix re-
mains same throughout the entire manipulation process. This
allow separation of symbolic factorization from the numeri-
cal computation because the pivot ordering for solving linear
system (10) remains same unless the structure of Jacobian is
altered.

To take advantage of sparsity and block structure, we sep-
arate symbolic factorization from numerical computation.
First, row and column orderings are determined such that
the fill-in in the Cholesky decomposition L is minimized.
The problem of choosing an ordering that minimizes fill-
in is NP-hard2. Our system uses the approximate minimum
degree heuristic (AMD) proposed by Davis, Amestoy, and
Duff1. Second, the non-zero structure of the Cholesky fac-
tor is determined and sparse storage is allocated accordingly
This takes care of indexing and associated bookkeeping so
that the actual numerical factorization takes place only for
the non-zero elements. If the structure of JJT is unchanged
during the iterations, we can do the symbolic decomposition
just once, repeating only the numerical part thereafter.

5.3. The Push Cholesky Algorithm

After the symbolic phase that concentrates about the
pivoting rule and pivoting order, the numerical phase solves
a sparse symmetric system. Our sparse factorization method
is based on the push Cholesky algorithm2. L

:k denotes the
kth column of L and L(i: j)k denotes the kth column from row
i to row j.

1. for j = 1, ... m

2. L j j :=
p

L j j

3. L( j+1:m) j := L( j+1:m)=L j j

4. for k = j + 1, ... m

5. if Lk j 6= 0

6. L(k+1:m)k := L(k+1:m)k�Lk jL(k+1:m) j

THE PUSH CHOLESKY ALGORITHM

The push Cholesky algorithm is categorized as a column-
Cholesky factorization in which the columns of L are com-
puted in turn, one by one. Although the algorithm is pre-
sented in columns, the actual computation is usually per-
formed for few elements in a column. For example, in step
6, only the non-zero components of L(k+1:m) j are subtracted.
However, since a column is used to update another col-
umn, when the non-zero structures of two columns, L

: j and
L

:k, don’t correspond, we pay a bookkeeping penalty in
the sparse algorithm. A supernode technique is used to get
around this problem and eventually to achieve faster sparse
solving 2. A supernode is a set of adjacent columns in L hav-
ing the same non-zero pattern below the diagonal of the pre-
vious column. By regrouping columns using the supernode
technique, all columns in the supernode update exactly the
same position in the subsequent columns. The supernode
also makes loop unrolling possible 3. With most common
memory architectures having at least 2 levels of cache, loop
unrolling leads to speedup by taking advantage of locality
of memory access. Since the loop from step 4 to step 6 is
performed only for few non-zero elements in a column, the
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asymptotic complexity of this sparse Cholesky factorization
is O(nnz(L))2, where nnz(L) is the number of non-zeros in L.

5.4. Inequality Constraints

A common way to handle inequality constraints in nonlin-
ear optimization is to add a logarithmic barrier function. As
in (15), we take the logarithm of all inequality constraints
and subtract the resulting terms from the original objective
function.

minimize kq�q0k
2
�µ∑ logΦ j(q)

s:t: Φi(q) = 0
i = 1::meq; j = 1::mineq; meq +mineq = m

(15)

If any inequality constraint is violated, the log function goes
to negative infinity and, consequently, objective function
goes to the positive infinity. For the Newton’s direction, we
need rF and the linear system becomes�

W �JT

�J 0

��
δ1
δ2

�
=

�
b1
b2

�

W =r
2E(q)+µ∑

�
1

Φ2
j (q)

rΦ j(q)rΦ j(q)
T

�
1

Φ j(q)
r

2Φ j(q)
i

(16)

where W represents a derivative of the objective function.
An implicit assumption is that the starting point must satisfy
all inequality constraints. There are two main disadvantages
of this approach. An appropriate coefficient for the logarith-
mic barrier function must be selected to ensure convergence
and numerical stability. Furthermore, choosing an efficient
sparse linear system solving algorithm may depend on the
structure of the upper left corner block W . The normal equa-
tion method requires an inverse of W . Since W is a general
symmetric matrix, it is costly to invert. W becomes diago-
nal matrix only if all the inequality constraints are simple
bounds. A modified nonlinear optimization formulation (17)
shows how to eliminate problems related to the barrier func-
tion approach.

minimize E(q;Y )
s:t: Φi(q) = 0

Φ j(q)�Y2
j = 0

(17)

All inequality constraints are converted into equality con-
straints by introducing new variables Y . The square of Y
ensures that Φ j(q) is greater than or equal to zero. Since
we don’t use logarithmic barrier function, the upper left
block W becomes an identity matrix. Therefore, the push
Cholesky algorithm based on the normal equation formu-
lated for systems with equality constraints can be used di-
rectly. The number of variables increases by the number of
active inequality constraints.

5.5. Over-determined case

Conflicting or unreachable goals yield singular constraint
matrices. Singular value decomposition methods can be used

to solve such problems, but are expensive. In some cases,
we alter the objective function to help the system find a rea-
sonably close solution in a least-squares sense. The objec-
tive function then becomes a least squares summation of the
Euclidean distance between goal positions. The main disad-
vantage of this approach is that the overall structure of the
system has to be modified to accommodate new objective
function. In other cases, we use a different technique, called
damping to make the matrices non-singular. By altering JJT

with small diagonal elements of µI, we can avoid trying to
solve a singular system.

>From a user interface point of view, over-determined
cases can be avoided or solved by providing users a chance
to evaluate the situation. Since users get continuous feed-
back, when there are conflicting goals or the goals can not
be reached, users might know how to guide the the system
around the problem. Similar user interface scheme can be
applied when the system is trapped in local minima.

6. Results and concluding remarks

In this paper, we described how to formulate, manage, and
solve a set of inequality constraints that enables 3D object
manipulation with geometry awareness. Based on the near-
est feature witness and interpenetration information reported
by a geometry system, inequality constraints for preventing
interpenetration are formulated. The geometric constraint
monitoring system updates inequality constraints as objects
move and maintain active constraints set as small as pos-
sible. Combined with kinematic and goals constraints, the
object manipulation problem is cast as a nonlinear optimiza-
tion problem. We developed an efficient sparse algorithm for
solving the optimization problem. Based on these results, we
implemented a program that allows users to manipulate com-
plex object configurations interactively. The performance of
the manipulation algorithm scales well with the number of
objects and active equality and inequality constraints; the
push Cholesky algorithm performs well and scales nearly
linearly, for instance. Tests were run on an SGI O2 work-
station with a 175MHz R10000 processor and a PC with
400MHz Pentium II processor. A test configuration with
212 variables and 1455 non-zero elements, roughly 96%
sparse, takes less than 7.5-20ms per solution on the Pen-
tiumII. System performance does not degrade in the pres-
ence of closed loop configurations or inequality constraints.
However, changing constraints do generate overhead that
can slow down the algorithm. When a collision occurs or
a new nearest feature pair is otherwise identified, the algo-
rithm must set up new penetration prevention constraints and
perform relatively costly additional symbolic factorization.

Some of our current work aims at developing more pow-
erful and appropriate interaction metaphors for manipulat-
ing complex 3D objects. At present, our system employs the
mouse to define and manipulate simple point-based goals
and trajectories. The human figure manipulation “challenge
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problem” of Figure 1 involves contact over extended re-
gions and is tedious to carry out using simple manipulation
metaphors. Furthermore, it cannot even be solved fully ade-
quately without accounting for object deformability. Extend-
ing geometrically aware object manipulation to include de-
formability is thus an important remaining challenge.
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