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ABSTRACT

Traditional motion capture (mocap) has been well-studied in visual science for the last decades. However
the field is mostly about capturing precise animation to be used in specific applications after intensive post
processing such as studying biomechanics or rigging models in movies. These data sets are normally
captured in complex laboratory environments with sophisticated equipment thus making motion capture a
field that is mostly exclusive to professional animators. In addition, obtrusive sensors must be attached to
actors and calibrated within the capturing system, resulting in limited and unnatural motion. In recent year
the rise of computer vision and interactive entertainment opened the gate for a different type of motion
capture which focuses on producing optical markerless or mechanical sensorless motion capture.
Furthermore a wide array of low-cost device are released that are easy to use for less mission critical
applications. This paper describes a new technique of using multiple infrared devices to process data from
multiple infrared sensors to enhance the flexibility and accuracy of the markerless mocap using commodity
devices such as Kinect. The method involves analyzing each individual sensor data, decompose and rebuild
them into a uniformed skeleton across all sensors. We then assign criteria to define the confidence level of
captured signal from sensor. Each sensor operates on its own process and communicates through MPI.
Our method emphasizes on the need of minimum calculation overhead for better real time performance
while being able to maintain good scalability.
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1. INTRODUCTION

Technologies and methods that produce high quality motion capture (mocap) data have been
available for quite some time. However they are usually out of reach of the mainstream users due
to cost and complexity. The traditional mocap setups like optical or magnetic systems require a
cumbersome configuration of markers and/or sensors on the actor. There have also been research
about markerless motion capture but they also require complex pre-processing and calibration in a
laboratory environment.  Another drawback is the high cost of these systems, and the data itself
needs a lot of post processing. Because of those conditions, while traditional methods can yield
very accurate data, they can only used in particular application segments.   In recent years the
entertainment industry has started introducing cheap and simple devices to stimulate some basic
motion capture technology to the mainstream market. The Wiimote and Playstation Move have
incorporated tracking sensors to record hand movements to estimate motion (or pose) and apply
the motion into target applications. Based on computer vision technology, Playstation Eye and
Microsoft Kinect have drawn a lot of interests for casual applications. These devices employ
infrared sensors to track an actor’s position and allow some basic visual interaction with on
screen objects. While they do not measure up to the traditional motion capture system in term of
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accuracy and detail, all of these devices are meant for interactive use, fast response, efficient data
processing at very low cost.

The Kinect Device is one of the first widely accepted motion sensors released to mainstream
users. It comes with two sensors, an infrared and a RGB sensor, but this paper only focuses on the
use of the infrared sensor for mocap, although we might explore the potential of the RGB sensor
in the future. However the techniques presented here is based on receiving and processing data
from any infrared device, and should work with other devices, such as the Playstation Eye with
iPisoft’s Markerless Motion Capture suit.

Since its inception, there have been various projects in Kinect communities to promote intuitive
user interactions, from patience monitoring [41] to robotics and surgical operations [42].
However Kinect has many draw back such as inconsistent data, noise, very limited actor
orientation and compromise in accuracy for responsiveness. This paper addresses some of the
disadvantages while remains simple and inexpensive enough that it can still be used interactively.
Specifically these are main contributions that this paper seeks to address and correct or improve:

• Limited actor orientation: sensor can only detect an actor facing it directly.
• Inaccurate joint tracking: due to either occlusion or orientation.
• Conflicting and corrupted data: due to signal interference.
• Scalable method that can be used to track up to 360 viewpoints for full body.

2. RELATED WORK
2.1. Markerless Motion Capture

The idea of using markerless motion capture has been active for quite some time. While
cumbersome, a traditional motion cap model using markers can reliably relays the joint position
on active model thanked to the attached markers which can be easily identified by some
parameters. A markerless motion capture process does not have this data and as thus, has to
construct the joint information base on the visual cue. A comparison about the two methods was
given by Lanshammar and Persson based on video image [40]. Some popular approaches to
constructing the data include using depth images [1,7,19] and RGB image segmentation [5,8], or
both[11]. Depth image method first involves generating an intensity map base on the depth info
of each pixel. Data calibration such as near and far plane can be used to remove environment
background so that only the actor’s information is constructed. The next part is to define a region
for each key body part. This can be done by either texture map targeting or establishing local
planars [44]. Alternatively, a visual hull of the actor is reconstructed into a workable model
[4,17,36]. A visual hull can be described as a 3D approximation of the object’s shapes, in this
case a human actor. The silhouette of the actor for each camera is calculated from a background
subtraction using the depth image generated from an infrared sensor. The hull of a human model
is then constructed to represent the actor in 3D. There are several methods on how to construct
one such as constructing it from segmented body part. One approach is to use super-quadric shape
with a joint hierarchy to hold them together. Our main interest in this paper is on the accuracy of
the joint hierarchy itself instead of the model presentation. Once we have the correct joint data we
can then use it to rig any general human mesh for demonstrating purpose. In case of an absolute
model presentation is needed, a full body scan of the actor will be needed. S. Corazza et. al
provided another method by constructing a visual hull base on a point cloud system with
embedded kinematic constraint, this method while produce a very accurate model it is computing
intensive [2,8].
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2.2. Motion Analysis

Upon reconstructing the model, the next step in markerless motion capture is how to recognize
the actor’s motion based on the cue. Depending on the need of the application the methods are
varied. In the case of single sensor the interest lies more within detecting a specific set of poses
for interaction. This case usually treats the depth image as a 2D space  image[13,26,28]. To be
able to analyze real 3D motion the process usually involved a set of training data.[21,24,29] This
is usually done by training the data through a variety of human pose[30,33,34]. In general,
markerless motion cap is about understanding a set of poses and interpreting the motion in
between. The quality of the final animation depends on the original training set (synthesis image)
and the decision tree.[1,38,39]. Synthesis image is created from a random set of parameter
including a depth image and 3D texture meshes.

2.3. Occlusions and Collision

One of the most significant disadvantages of markerless motion capture is occlusion. Since the
data come from a view of a sensor instead of being generated on the actor, it is quite common that
certain joints will not be seen by a sensor at certain pose. A common method to deal with this
issue on single sensor by using an inferred or prediction system: as in using the position of other
visible joint to make a guess for where the occluded joint is. This can be quite confusing not only
for the occluded joint but also for the joint in front since the algorithm might be confused in
separating the 2 joints. Vladimir Dochev, Tzvetomir Vassilev, and Bernhard Spanlang proposed a
method of using multiple layers of depth map to detect occlusion [3]. It divides the depth map
into several layers and separated the body parts base on their depth level. Two depth maps of the
actor are taken from the front and back then decomposed and labeled into difference body parts.
Each body part is then given a bounding box (BB) volume. The BB volume is then used to detect
collision between body-parts. This method can be used by any infrared sensor. In our prototype
process however the collision approach is generally too expensive for interactive application.
Another approach using Image Space interference test was introduced [26] but it is also too
expensive for our purpose.

2.4. Sensor Calibration

Since most markerless motion capture system will require quite a few sensors to be able to record
the full body motion, they have to be calibrated so data from each device can be combined
together. A typical problem of markerless systems is noise. Noise is an inherited issue with the
model even among high end system. They can come from air and lighting condition, surface
property of the tracked object among other thing. Professional grade sensor however does have
benefit to address other source of noise. For example in the same system most likely each sensor
will have a unique identifier and operate on a different infrared frequency so they don’t have to
worry about signal interference between sensors. This is a problem with consumer grade sensor
(especially for mass produce sensor like Kinect): when working with multiple devices all the
infrared signals on each sensor will operate on the same frequency. This means when more than
one sensor is pointed at the same direction, they will create some noise and interference. An
illustration of this problem is showed in the figure below.

Figure 1: Infrared signal interference
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An infrared sensor shoots a beam at the object and waits for a reflective signal, based on this wait
time the depth (distance from the sensor) of a particular point is constructed. Due to the scattering
rate when a beam hits the surface, it is quite common for this signal to be reflect in different
direction and not just toward the original sensor and it’s quite possible for another sensor to pick
this signal up. In the case of professional systems this is not an issue since each sensor will only
pick up the signal of its corresponding frequency while ignoring signal from other sensor. But
since all of our sensors operate on the same frequency they can cause interference. Our
experience showed that the level of interference depends on the density and orientation of the
sensors. For example two sensors with a parallel orientation will suffer a lot more interference
comparing to two sensors that are perpendicular to each other. We find that with enough spread
(about 4m apart) and wide enough angles (around 60-120 degree) the interference should not
have serious effect when working on the skeleton data, and there are suggestions to correct and
improve the quality of the Depth Image. One way to improve the depth image is to correct the
noise issue. A typical method is Kalman filters to reduce the fluctuation by adaptive hole-filling
with spatial-temporal information [9,10,11]. While the depth data is the base where all of our
calculation is derived from, we would want a smooth and stable data set to work with, but each
filter will come with an overhead cost that needs to be considered for speed. Kai Berger et al.
provided a comprehensive method of setting up and calibrate four infrared sensors [6] using the
Bougueti’s checkerboard tool under different lighting condition.[22] This method is used to
calibrate and align the depth sensors using an RGB camera. A checker pattern is printed on an
aluminum foil and used as the point of reference. The purpose is to provide a unique predictable
IR pattern to be used in the calibration. We found that the matching silhouette approach using
Depth Map while might provide a more accurate motion cap (because the Skeleton data is
extracted from it) it also has some limitation. It requires an elaborated calibration process to align
each sensor, and this is only at a specific point in space. The displacement of an actor can result in
the data from each sensor becomes out of phase.

2.5. Unsynchronized Camera Tracking

Camera tracking, a common approach for a single moving camera [4], is mainly used for scene
reconstruction and not for motion since it cannot cover all angle at the same time.
Unsynchronized multi-camera animation tracking like the one proposed by N.Hasler et al[20]
uses an approach that treat the multi-camera case as an extension of the single-moving-camera for
the calibration process. In both cases, the main difficulty lies with identifying the sensor position
in a 3D space in relative to the scene or tracking object. A common technique is using the
Structure-from-Motion (SfM) approach. This technique employs the use of continuous 2D images
taking from a moving sensor and identify common feature between images to reconstruct the
scene in 3D. First each camera is calibrated using a feature based method against a static
background. In the case of infrared sensor this is the distance trajectory from the feature point P
to the sensor. In each frame the 2D image information of P is recorded and match with the same
point in 3D space. As the camera moves around and a set of consecutive frames are compared and
the 3D presentation of P is created usually by triangulation. In the case of multiple sensors, the
authors of the method proposed in [20] extend the case of one sensor. Instead of moving one
sensor and take different frames continuously, the process is replaced with multiple sensors
taking several frames at the same time. Each sensor calculates its own set of SfM data like
described above based on their own projection matrix. The theory of SfM reconstruction in this
case is: given consistent structure in each image In, the point Px,y in each image can be calculated
by the projection matrix Pn. The method used in this paper is similar to the pairwise matching
described in [45], we further enhance this technique by constructing matching planes between
each coordinate space.
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3. OVERALL CONCEPT AND DESIGN

Our approach to markerless motion tracking can be summarized as follow:

• Process the data from each sensor and reconstructed more accurate-kinematic base data
set.

• Construct a uniform skeleton model on each sensor.
• Use a smart calibration system to reduce complexity.
• Establish a ranking system to merge the data from all sensors as well as providing tools

for further optimization.
• Good flexibility and scalability.

While it’s possible for a computer to be able to connect and run several Kinects at the same t ime,
the skeleton tracking can only be activated on the first devices on the same computer. We have
tried to use file I/O to transfer data between separate process, but this is proven to be very slow
even only between two processes. Our design principles are

• Each sensor should run on its own process in parallel
• We assign each sensor to a separate USB hub to secure sufficient bandwidth
• We need a thread-safe mechanism to ensure all sensors are at the same frame

These considerations lead us to MPI in order to handle the data exchange between our processes.
We found that the overhead of messaging between process is acceptable, and can be optimized by
reduce the complexity of the message to bare minimum. Also since MPI can handle
communication between processes on the same computer or communication between nodes in a
network without many differences, the use of MPI thus can imply greater scaling flexibility in the
case we want to use more devices. Another useful feature of MPI is its Barrier Synchronization
routine, in which we use to synchronize our sensor. Assuming we have a powerful enough
computer or network, each sensor should be running at the same steady frame rate. However
some data lag might appear during the gathering process. One final advantage that makes us
choose MPI over other mean of communication is due to its scalability. There are very little
differences between handling processes in one computer or processes across a network, this will
allow us to add more sensors and computing nodes as needed by our accuracy and computer’s
processing power without modifying the base code too much.

It is worthwhile to mention the balance between accuracy and speed. A single infrared/RBG is
neither a speedy nor accurate by the average animation capture standard. Especially most
consumer grade device even when working at optimal condition its sensor is normally capped at
30 frames per second (Kinect, Playstation Eyes). Since we cannot make the device any faster, the
goal of our research is to produce a better result from the given raw data. But another goal is to
maintain its interactive element. While we intend to maintain fair balance between efficiency and
accuracy, but in case of conflict our priority goes to interactivity.

The data structure was designed to handle following tasks effectively: capture the raw data for
process, prepare the data to be sent and received via MPI, reconstruct each skeleton at the main
process and merging into the final skeleton. For those purpose we have developed following
classes:

• jointArray: It is the place holder for the raw data from the Kinect. It also exists at the end
of the main process where it is used to hold the final skeleton.
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• angleSet: this class is where we hold all the data we processed at each child node, they
don’t contain the skeleton data itself, but one can be constructed from them. The original
spine coordinate is carried over to serve as the starting point when the new skeleton is
constructed.

• processSkeleton: this class is created using data from angleSet, it contains a copy of a
kinematic built jointArray, and the confident angles. This is what we send to the main
process. Once arrived, the data will be used to construct the variable synchAngle at the
main process.

Synchronized Sensor Space: each sensor needs to be able to understand their relative position to
one another in order for the merging process. And while there are methods to pre-calibrate the
sensors base on their setup, we feel it too restrictive for our purpose since the process is
complicate for end users and it requires third party tools. In addition, each time the sensors are set
up differently or the actor moves out of the designate spot the system may need to recalibrate. We
have designed a smart calibration method that will be able to self-calibre as long as the sensors
are in reasonable position using the info from each skeleton. It will also allow the actors to move
relatively freely without worrying about de-synch the data from each sensor. In another word,
calibration and synchronization is done at run time. Input time set up information can help, but
not critical (we have it as a safety measure).

Ranking system: one of the biggest drawbacks of infrared device is it only returns optimal data
when the actor face the sensor directly, and the quality degrades as the actor turn away from it.
We propose a method to address this problem by distributing a priority ranking system based on
how far away an actor turned away from sensor.

4. METHOD AND IMPLEMENTATION
4.1. Joint Info Processing

We start by extracting the raw data to fill our jointArray for each device. These includes the
position of each joint and a status flag; true means the joint will not be considered for future
calculation, false means the data point is good and can be used. For every joint Jn(x,y,z, status):

• Tracked: indicate the joint is actually seen by the sensor and properly tracked. We set the
status flag to true.

• Inferred: the joint is not actually seen, but its position is extrapolated using other joint.
(For example, based on the wrist and shoulder position the sensor can guess our elbow
position). This is mainly how occluded joints are constructed. For our purpose this data is
not good enough but we may fall back on it in case a joint cannot be seen by any sensor.
We set the status flag to false.

• Unknown: there is no information about this joint from sensor. (Either it doesn't see it, or
the joint is outside the FOV or min/max distance). We won’t use them for calculation,
thus the status flag is set to zero.

4.2. Smooth Filter

To alleviate the noise problem in order to get more accurate data we need some filters. There are
many types of filter that can be employed for processing signal noise such as the Savitzky-Golay
algorithm that is based on a Least-Squares Polynomial smoothing [42]. The balance between
accuracy and speed is an important consideration for choosing the right type of filter. Exponential
or double Exponential Smoothing Filter can give good result but also very expensive for
interactive applications. Most devices’ API and library already comes with a few filters for the
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noise generated on a particular sensor but often that’s not enough. We focus on the difference
between data generated by different sensors that even in the case of perfect synchronization will
still not guarantee to be same given the nature of markerless motion capture. In this paper we
tackle the issue using several methods, while they will not be independent filters they are used
directly as part of our data construction. We construct a uniform model on our sensor based on
kinematic data which is balance between speed and accuracy. The reason why we decomposed
and reconstruct our skeleton data instead of using the raw joint position data from each sensor is
to ensure the uniformity between our presentations. It may seems redundant due to our new data
is calculated based on the raw data, but by reconstructing them using only the angle and rotation
of each bone, we can impose the same offset for the bone sections between the joint across all
sensors. This has the benefit of our new skeleton will have the same orientation value as the raw
data, but the noise of the specific joint location is reduced. We also use a joint average filter
which is cheap, but reliable if we are able to feed it with good data which are provided by our
uniform models and a ranking system.

4.3. Building Angleset

Using the information from jointArray, we break down the 20 joints into 19 set of angles Ax(Ja,
Jb, Jc) where x is the angle from one particular joint to another and Ja, Jb, Jc are 3 connected
joints from jointArray. We will then use these 19 angles to calculate the new 20 joint location for
our uniformed skeleton. The method to construct Ax is as followed: we check the status of the 3
joints component that makes up the angle. For our purpose (Ja.Status && Jb.Status && Jc.Status)
has to be true for the set to be taken into calculation. This method is meant to enhance the
accuracy and authenticity of the later reconstructed joint, instead of just relying only on the status
of each individual joint.  For example in the pose where the actor points the hand directly at the
sensor, only the hand joint is visible and tracked correctly while the wrist and elbow joints are
occluded (and thus inferred). While for simple tracking application the correct position of the
hand might be sufficient, this is not a reliable construct in term of hierarchy kinematic.

Once all joints in Ax(Ja, Jb, Jc) is verified, we calculate the angle between them by first
calculating and normalize two vector a,b and the angle θ between them, as well as their axis of
rotation n:

a = (Ja – Jb),Normalize();
b = (Jc – Jb).Normalize();
θ = DotProduct(a,b).Normalize();
n = CrossProcut(a,b).Normalize();

Also for each Ax that is verified, we set the associated angle’s status to true indicating it can be
used in reconstruction.

4.4. Skeleton Reconstruction

Once the data of the angleSet A is completed, we begin our first reconstruction. Starting from the
spine joint we apply a forward kinematic process basing on the angular information and pre-
defined offset to map out the skeleton. The most critical part in this reconstruction process is the
rotation matrix that allow us to calculate a new joint by rotate a vector about a certain angle
around an arbitrary axis using a single Rotation Matrix R(n, θ). To rotate a unit vector b to the
new position b’ around an arbitrary axis n by an angle θ, using the rotation matrix R, the
derivation is descried as follow:
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Figure 2: the rotation model
R(n, θ) =o′p′q′ = cosθ(1 − n ) + n n n (1 − cosθ) + n sinθ n n (1 − cosθ) − n sinθn n (1 − cosθ) − n sinθ n (1 − cosθ) + cosθ n n (1 − cosθ) + n sinθn n (1 − cosθ) + n sinθ n n (1 − cosθ) − n sinθ n (1 − cosθ) + cosθ
Let’s call Rn is the normalize-homogenous rotation matrix for joint n, we then multiply a scalar

Bn (which varied for each specific joint) to get the new joint location.

Jnnew =
∗ 0⋮ ⋮0 1 ∗ Bn

For joints that are properly calculated due to availability of the associate angle Ax, we set the
status of the joint to true. For joints that the associated angle data is not available, we temporary
fill it with the original sensor data, but set the joint status to false. Structure wise this new
joinArray is the same as the initial jointArray with the difference is that it is constructed using
hierarchy kinematic as opposed to raw data. There are two purposes to why we construct this new
jointArray:

• As discussed above, this helps us to build a more reliable model based on kinematic
structure and thus minimize the error that can be produced from the raw data (noise).

• By using the angle information with the same pre-define offset on all sensors, we are able
to produce a uniform skeleton model across all process and eliminate the differences
result from distance and scaling of each sensor. The uniform skeleton model is a critical
key in our calibration and synchronization.

We then embedded this new jointArray into our processSkeleton class with the additional of the
two confidentAngle. Then we send this information from each child process to the main process.

4.5. Data Calibration

All the tasks carried so far are on an individual basic by each process working with their
respective sensor. This is where our method is different than the traditional calibration discussed
in previous works. Usually the data about the setup of the sensors is given at input time to ensure
each sensor can understand and interpreted each other, in other methods the set up data is used in
after-processing when the data is merged. The method we are describing is doing the opposite.
Each sensor works independently without needing the calibration data of other device, but they
produce a uniform skeleton model in their respective world space. When these uniformed
skeletons are sent to the same space of the reference sensor, they will be synchronized with that
space in run time.

When each skeleton arrive at the main process, they are put into the same world space of the
reference sensor. This is the sensor defined by user whose coordinate space provides the
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orientation and displacement for the final model of which all other sensors are synched to. We
can call this our active work space, or global space. At first the skeletons from other sensor will
appear to be at arbitrary location and orientation within the reference space because their original
local spaces were all different. But thanked to the uniformed structure of all skeleton it’s possible
to synchronize them to the same point through a series of translation and rotation, and the info
needed can be calculated from each skeleton itself.

Translation: the translation offset is simple to calculate. Similar to the approach in [20] the offset
between two data sets we can get this information by calculating the difference between the same
feature points on each frame of reference. However we don’t have to rely on a static cue, instead
due to our previous preparation we already have the reference point. Ideally, if each sensor is able
to return a perfect set of data then each of our 20 joints can be used as a reference point but this
will be most likely not the case.  All we need is the distance between each child skeletons and the
reference skeleton. For this calculation to be accurate we need to pick a center point on each
skeleton. The spine joint is chosen for this given its position at the middle of the skeleton. Also it
is the most reliably tracked joint at all time since it is not contested by occlusion in most poses.
This is also the root joint for our skeleton construction so it’s made a natural selection. For each
skeleton T we calculate a displacement vector m with the reference skeleton R. To further
enhance the accuracy of the translation, the difference between the hip centers and average the
two values are calculated.

After the translation a rotation is needed in order to put all skeletons in the same orientation, this
process is more complicate than the translation process above. We establish the idea of a plane
that each skeleton is based on. This plane is constructed using a set of 3 joints on the skeleton,
which 3 joints is used and under what circumstance need to have these considerations.

• They have to be well representative of the body orientation.
• They need to be the least affected by movement.

Picking the correct 3 joints to construct this plane is a difficult task because the human body can
twist. The spine joint is an obvious candidate for the first joint of any set given its location. The
set of (spine, right shoulder, left shoulder) joints can construct a good plane to represent the upper
body but not necessary the entire body if the actor is twisting the hip, the same applies for the set
of (hip center, right hip, left hip). The safest method to construct the plane is using a calibration
pose for each sensor when the actor is not twisted. A more dynamic way of doing it will be to
average two or more planes from the same skeleton. We then using the cross product to figure the
normal vector of each plane, then calculate the angle ϱ between each plane and the reference
plane. Since all skeletons are already at the same root from the previous translation, we create a
rotation axis around Y-axis using the spine joint. Next we rotate all the joints of each skeleton
around this axis with their respective ϱ. The result is now we have all skeleton from each sensor
in the same reference frame.

We believe there is a more reliable way to calculate the ϱ angle through the use of an augmented
sensor. This sensor can be set to track only the body orientation instead of the full body tracking
and thus can be set up and calibrated specifically for this purpose. For example if a sensor can
reliably track the two shoulder joints we can use the data to calculate the body angle base on the
Z-coordinate of the two shoulders by:

ϱ = Tan-1 (shoulderRight.Z – shoulderLeft.Z, shoulderLeft.X – shoulderRight.X)
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4.6. Merging the Final Skeleton

When all skeleton data is synchronized, they are used to reconstruct the final skeleton. Note that
the data from each individual skeleton might not be complete or accurate due to:

• Joints are occluded, and thus their positions are inferred and not reconstructed due to the
lack of kinematic data.

• Joint quality’s degradation due to the actor is turning away from the sensor.

Our reconstruction process basically selects the best possible data from each skeleton for each
joint. To help with this selection progress we propose a ranking and token system.
The processSkeleton class has a confidentAngle with two angles α and β. These angles are used
to track how far away the actor is turning away from the camera. Their concept and construction
is similar to the construction of the planes as in the planes are constructed using a set of 3 joints
on the skeleton, but with a few key differences:

• The planes are compared against the sensor’s XY plane and not the reference plane. The
angles are calculated based on the normal vector of the skeleton’s plane and the Z axis of
the sensor.

• The reason that there are two angles is because α represents the orientation of the upper
(above the spine joint) body while β represent orientation of the lower body (below the
spine joint). Unlike the angle for the sensor calibration where the angle has to uniquely
reflect the sensor’s orientation, these angles can be varied on the same skeleton. For
example when an actor twist in the same pose, a certain sensor might return good data for
the facing half of the body while it’s better to take the data of the upper from another
sensor. To improve accuracy both the vector Vα and Vβ are calculated using the half
body average:

Vα = Average(Cross(spine, left shoulder, shoulder center).normalize(), Cross(spine, right
shoulder, shoulder center).normalize())
Vβ = Average(Cross(spine, left hip, hip center).normalize(), Cross(spine, right hip, hip
center).normalize()).

Table 1: Joint Ranking System
Degree of turning Rank Description
-60o > x > 60o 4 Data degradation can be very bad. Ignore this joint

if better data available from other skeletons.
-30o > x > 30o 3 If this is α, ignore if better data is available. If this is

beta, recommend average the value with other skeleton
of the same rank.

-10o > x > 10o 2 Data can generally considered stable enough,
recommend average with other skeleton of the same
rank if possible.

-10o < x < 10o 1 The best possible data, it can be used as a
standalone although one might want to consider
average with skeleton  in rank 2. Also considering
giving this skeleton set the lead token.

One thing to note is the sensor with the lead token is not necessarily the same sensor being used
as the reference, although it can be and technically is ideal for the role. However repeatedly
changing the reference sensor is not desirable in term of speed since it will need more
synchronization pass (more rotation), and it can cause inconsistency in term of the actor’s
location and orientation. Our main purpose of introducing this token aside from pointing out
which sensor has the best data, it also provides a heuristic locality for adjacent sensors. For
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example, the two sensors immediately next to the lead sensors will most likely hold better data
than those that are farther away; this can be used for data optimization without paying for
expensive arithmetic. It also provides a good indicator for the case when we have no choice but to
change the reference camera. This usually happens when the actor turns so far (> |60 degree|)
away from the reference sensor that the data it receives cannot be used to reliably calculate the
reference angle. In this case we have to change our reference sensor to one that is closer to the
direction the actor is facing (and then synch them back to the original orientation). Every sensor
can hold the lead token when the actor is facing them, but arbitrary making every sensor into a
potential reference has the disadvantages described above. It is better (and cheaper) to specify a
specific set of potential sensors to be used as reference, and switching between them depending
on their proximity to the sensor that’s holding the lead token.

Figure 3: Let Black, Yellow, Red serve as our potential reference sensor. If Green is hold the lead token,
then Black will serve as our reference, if blue is holding the lead token than we pick Red as our reference
sensor.

Another advantage of this set up is that the user or application can add or remove sensors between
the reference sensors without needing to recalibrate the whole system each time it is done. Finally
after all necessary preparation, we merge the data and construct our final skeleton with a simple
process. We consider all the candidates for each joint from each skeleton. Starting from the sensor
with the lead token, we check all adjacent sensors for their joint status and rank. User can set up
some constraint on how many sensors away from the lead sensor to reduce the amount of
calculation. The joint selection is described in the table below:

Table 2: Joint selection depending on its status and rank.
Rank 1 Rank 2 Rank 3 Rank 4

Status
True

Take. Take. Average
with others of
the same
condition.

Take or ignore
depending on which
joint. Ignore if there
are better joint
available.

Ignore if any better
joint is available.
Only take if all other
skeletons are in the
same condition.

Status
False

Ignore. If the joint is
reported false on all
sensor, then take base on
confident value

Ignore Ignore Ignore.

Note that according to the table the status of a joint take precedent over the ranking system. The
reason for this is because even if the actor is facing the camera, a false status means the joint is
being occluded, and thus it’s better to use joint from another sensor that can track properly even
though from a less than optimal angle. In the case of a joint cannot be tracked we will use the
inferred data from the top rank sensor, assuming it is in the best position to guess the missing
joint.

5. EXPERIMENTS AND RESULT

We run a setup with 3 Kinect Sensors with various test scenarios to verify the concepts we
introduced so far.
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5.1. Calibration Test

The first test is to check the accuracy of our smart calibration and synchronization method. To
perform this test we prepare three sets of data:

• The skeleton data from the reference sensor. (skeleton A)
• The skeleton from a child sensor with an input time (calibrated with physical

measurement). (skeleton B)
• The skeleton data from a child sensor synchronized with data calculated in run time.

(Skeleton C).

Our metric is as followed: for each joint we calculate the distance of the vector between each joint
and the root position. For each n joint we have DAx, DBx, DCx for skeleton A, B, and C. Then
we calculate the percent error E as:

E = |D − D ||D | ∗ 100 ; E = |D − D ||D | ∗ 100
The graphs below compares the difference between the two types of calibration, the data is taken
over 600 frames (about 20 seconds) where the actor performs a variety of poses. The line is an
error average between all joints.

Figure 4 : the percentage of error between two different types of calibration. B(blue) line represents the
tradition input time calibration while C(red) line represents the runtime calibration.

Figure 5: the same data set of Figure 4, but averaged out the value of every 100 frames to better illustrate
the differences between two calibration methods.

Note that we’re ignoring the spike value showed in the graph since they are represented frames
that a particular sensor cannot come up with a good data and those data will likely be provided by
another sensor on those frame. Below we include a few screenshots from our prototype to
demonstrate the visual result. The first set of screenshots demonstrates the flexibility and
accuracy of our calibration method.
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For the 3 screenshots in Figure 6: we arbitrary drop two sensor a few meters away from each
other and eyeball them toward the same general direction.

• The first screen (a): shows the skeletons from each sensor after the child skeleton (blue)
is sent and put in the space of the reference skeleton (red).

• The second screen (b) shows the result of our synchronization, as showed we achieve a
pretty good overall overlap between two skeleton, this result was achieved by using no
input time calibration data (we don’t actually have it anyway since we’re setting up this
example casually on purpose), as described in our method the calibration data came from
our main process itself in run time.

• The third screen (c); we left the programming running, and had a person pick up the child
(blue) sensor and arbitrarily moved it around. Basically it was displaced for around a
meter in several directions with some small turn left and right, the screen was captured
during this process and it shows our method was able to keep up with the changes in real
time with the two skeleton are still closely matched.

Figure 6: Calibration test: a)The data from 2 sensors placing casually before a synchronization. b) This
figure shows the skeleton synced into the same coordinate using our new method, the sensor still at the
original position. c) one sensor is displaced (during run time), we can see that the action does not affect our
synchronization by much.

5.2. Construction Test

The second set of screenshots demonstrates our merging process and how a new skeleton can be
constructed using partial data from multiple skeletons.

For the screenshots in Figure 7, we again set up two sensors but their locations are more
deliberated and closer to an actual setup of a camera setup for a traditional marker less motion
capture system. The child sensor (green) is put at about 2 meter away from the reference (red)
sensor, their direct line of sight from an angle of 30 degrees at their intersection. A reminder here
is that we don’t make this information available to our system at input time.

• The first screen (a): two skeletons are pre-synched from two sensors. We can notice a few
differences here comparing to the first screen of the previous set. First is the angle
between the two skeletons. Another difference here is that the two skeletons are rendered
using raw data, so they’re not uniform. We take this screen to emphasize the differences
between them due to scaling caused by distance and camera orientation.

• The second screen (b): show two skeleton synched, basically the same concept of the
second screen from the first set.

• The third screen (c): we see another skeleton (blue), this is the newly merge skeleton. We
also rendered the original two skeletons (pre-synched) to server as reference. We
purposely stretch our right arm completely outside the red sensor FOV and cause its data
to be unavailable. But the green sensor being at a different angle, is still able to track that
arm as showed on the green skeleton, and thus they were using to construct the missing
arm on the blue skeleton (after synched and merged).



International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 2013

54

Figure 7 Construction test : a) Two skeleton raw data. b) Two skeletons are synched. c) Merged data,
demonstrate using different skeleton to construct missing joints.

5.3. Modeling Test

Visually, this test allows us to render poses that would be otherwise impossible to render with one
camera, specifically poses with the actor turning at a great angle and/or with occlusion. Figure 8
shows the skeleton data rendered with rigged and skinned model to demonstrate what is possible
before and after the application of our proposal method.

Here we can see the result of the same pose from the same actor:

• The first screen (a): With one sensor: the actor facing the sensor directly. No occlusion
and the pose is rendered correctly.

• The second screen (b): the same pose, but the actor turns about 70 degree away from the
sensor. Due to occlusion the pose is not modeled and rendered correctly. The overall
orientation is mixed up and the occluded arm has a strange rendering. This is not a pose
specific problem but in general what would happen to the model when an actor turns too
far away from the sensor for reason we have mentioned earlier.

• The second screen (c): with combination of multiple sensors, the pose is now rendered in
good quality. The orientation is correct and the occluded part is also rendered
satisfactorily.

We match our three sensors setup against the existing XNA Avatar demo from Microsoft. In the
Avatar demo, the tracker cannot properly track the actor at a body orientation of more than 30
degree away from the sensor, and occlusion results in a lot of strange animation on the avatar.
Our set up on the other hand shows significant improvement with reliable tracking of up to 80
degree of body orientation away from the reference sensor.

Figure 8: Modelling test demonstrating a correct pose in (c)

6. CONCLUSION

This paper has introduced a new method of merging data from multiple infrared devices, and we
have shown that this method can be applied to an accurate and efficient full-body motion
capturing system using consumer grade devices on the market. We introduce a novel calibration
process which will help lessen constraints in the set up process. Our prototype showed the method
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work reasonably well even without extensive calibration steps. This was possible due to the
construction of a uniform skeleton and selection of data that enhance the capacity of the sensor
and provide a more accurate tracking ability.  This in turn gives more flexibility to the action that
can be performed by the actor, including greater turn angle, a bigger field of movement, and more
reliable occlusion report for a confident pose estimation. The combination of using MPI for direct
communication and the lead token/reference sensors allow us to achieve a good level of
scalability since the calculation complexity does not scale with data volume. Depending on the
need of the application and degree of accuracy/complexity of the application and the desire angle
freedom more sensor can be added without making a significant changes in the base method. The
entire process is completed with limited overhead ensuring efficiency and scalability. All of these
are done using a commodity device available in the market, and thus it may have a wide range of
possibility for future applications.
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