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Abstract. The paper presents a simple, robust, and effective constraint en-
forcement scheme for rigid body dynamic simulation. The constraint enforce-
ment scheme treats the constraint equations implicitly providing stability as 
well as accuracy in constrained dynamic problems. The method does not re-
quire ad-hoc problem dependent parameters. We describe the formulation of 
implicit constraint enforcement for both holonomic and non-holonomic cases in 
rigid body simulation. A first order version of the method is compared to a first 
order version of the well-known Baumgarte stabilization.  

1   Introduction 

Rigid body simulation is highly important in the modeling of various physical sys-
tems and has been comprehensively studied in electrical and mechanical engineering. 
Rigid body dynamics involves a variety of holonomic constraints such as ball-and-
socket, hinges, sliders, universal joints, and contact constraints. In addition, non-
holonomic constraints have been used in simulations of robots and cars. In rigid body 
dynamics, constraint enforcement is critical to guarantee successful simulations since 
small but accumulating constraint drift could cause instabilities. Constraint satisfac-
tion through the use of Lagrange multipliers represents a challenging problem nu-
merically as the resulting system of equations is a mixed ODE algebraic system. Early 
workers solved this problem by differenting the constraint equations replacing the 
algebraic equation with an ODE but the solutions exhibited numerical drift in the 
constraint error. Baumgarte’s stabilization method [1] was introduced to reduce this 
numerical drift using parameter dependent stabilization terms and is still widely used 
today due to it’s simplicity. 

In this paper, we propose an implicit holonomic and non-holonomic constraint en-
forcement method for rigid body dynamics that provides numerical stability and accu-
racy without requiring ad-hoc stabilization parameter terms while providing the same 
asymptotic computational cost as the Baumgarte method. The approach is to implic-
itly expand the algebraic constraint in a Taylor series to the same order as the order of 
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the numerical method used to integrate the ODE system. The Taylor expansion is 
implicit in the state variables thus the method has desirable stability characteristics. 

2   Related Work 

The seminal work of Baumgarte [1] included second order feedback terms to stabilize 
constraints and has been used successfully for many applications [2, 3, 4, 6].  Numer-
ous improved methods have appeared over the decades since Baumgarte presented his 
method but Baumgarte’s stabilization is widely used due to its simplicity and the ease 
with which it is understood. The main drawback to Baumgarte stabilization is that the 
required parameters must be chosen in an ad-hoc manner. Another approach is post-
stabilization in which a correction is made to the state variables in order to minimize 
the constraint error. An example of this is Cline and Pai [5] who proposed a post-
stabilization approach for rigid body simulation. Post-stabilization requires additional 
computational load to reinstate the accuracy in the constraint and it can cause error in 
the motion of objects under complicated situations since the constraint drift reduction 
is performed independently from the conforming dynamic motions [7].  

3   Implicit Holonomic Constraint Enforcement 

In this section a simple implicit constraint enforcement method is presented and com-
pared to Baumgarte’s stabilization. It will be shown that a certain selection of 
Baumgarte parameters will result in the two methods being nearly identical for the 
holonomic case. A stability analysis will be presented and used as a guide to select 
parameters for Baumgarte’s stabilization technique. Let Φ be the vector of holonomic 
constraints. The equations of motion for the holonomically constrained system are 
written as  

T
rMr Fλ+ Φ =                                                   (1) 

TJ T Jπω λ ω ω+ Φ = −                                            (2) 

( ), 0r eΦ =                                                         (3) 

1
( )

2
e G e ω=                                                          (4) 

Where r are the center of mass coordinates, e are the Euler parameters associated with 
the orientation of the rigid bodies, rΦ and πΦ are the constraint jacobians associated 

with r and the orientation, respectively and λ is a vector containing the Lagrange mul-
tipliers. M and J are inertia matrices and ω  is the skew-symmetric matrix associated 
with the angular velocity ω . The matrix defining the time derivative of the Euler 
parameters and the angular velocity is given by: 

-e1 e0 e3 -e2 

G(e) = -e2 -e3 e0 e1

-e3 e2 -e1 e0

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

                                    (5) 
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Equations (1), (2) and (4) are discretized to first order as: 

 1 1( ) ( ) T
rr t t r t tM F tM λ− −+ Δ = + Δ − Δ Φ                       (6) 

( ) ( ) ( )r t t r t tr t t+ Δ = + Δ + Δ                               (7) 
1 1 1( ) ( ) ( ) ( ) Tt t t tJ T tJ t J t tJ πω ω ω ω λ− − −+ Δ = + Δ − Δ − Δ Φ            (8) 

( ) ( ) ( ) ( )
2

t
e t t e t G e t tωΔ+ Δ = + + Δ                           (9) 

The basic philosophy of the implicit constraint enforcement technique we use is to 
expand the algebraic constraint function in a Taylor series to the same order as the 
discrete equations. The resulting expansion is: 

{ }( ) ( ) ( ) ( ) 0rt t t r t t t t tπ ωΦ + Δ = Φ + Φ + Δ + Φ + Δ Δ =            (10) 

Equations (6) through (8) may be used to eliminate the new time velocity terms to 
obtain the linear system that must be solved for the Lagrange multiplier: 

{ } ( )1 1 1 1
2

1
( )T T

r r r rM J r M F J T J
tt

π π π πλ ω ω ω− − − −ΦΦ Φ + Φ Φ = + Φ + Φ + Φ + Φ −
ΔΔ

 (11) 

In this equation and in all equations that follow terms without explicit time depend-
ence indicated are evaluated at old time. Once this system is solved for the Lagrange 
multipliers equations (6) through (9) are used to update the other variables. Note that 
this linear system is symmetric positive definite. Baumgarte’s stabilization technique 
may be used for this system in the following way. First the constraint is stabilized by 
adding two terms to the second derivative with parameters α and β as follows: 

22 0α βΦ + Φ + Φ =                                    (12) 

A similar procedure is used to obtain the linear system to be solved for the Lagrange 
multipliers: 

{ } ( )
( ) ( )

1 1 2 1

1

  2

                                             ( )

T T
r r r r

r
r

M J r M F

J T J r r

π π π

π π π

λ β α ω

ω ω ω ω

− − −

−

Φ Φ + Φ Φ = Φ + Φ + Φ + Φ

+ Φ − + Φ + Φ
    (13) 

As with the simple implicit method, once this system is solved for the Lagrange multi-
pliers equations (6) through (9) are used to update the other variables. Baumgarte stabi-
lization is often criticized because selection of the parametersα and β  is ad-hoc and 

problem dependent. Greenwood [9] suggests that both parameters should be propor-
tional to the time step and a cursory examination of equations (12) and (10) indicates 
that the choices 10.5 tα −= Δ  and 1tβ −= Δ would result in our method and Baumgarte’s 

stabilization differing by only the last two terms in equation (12). In what follows we 
analyze the stability of these schemes and use the result to guide us in a selection for the 
parametersα and β . In order to analyze the stability the schemes described above we 

lump the center of gravity and orientation variables into a single vector q and we con-
sider a linearized system with linearized constraints with constraint gradient given by
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( )q qΦ = Β                                          (14) 

The dynamic system will have only constraint forces as we wish to isolate the ef-
fect of constraint enforcement on stability. The discretized homogeneous equations of 
motion may be written as: 

( ) ( ) 1 Tq t t q t tM λ−+ Δ = − Δ Β                           (15) 

( ) ( ) ( )q t t q t tq t t+ Δ = + Δ + Δ                            (16) 

Note that the mass matrix and inertia matrix are now lumped together. The linear 
system that must be solved for the Lagrange multiplier becomes. 

1
2

1 1
( ) ( )TM q t q t

tt
λ−Β Β = Β + Β

ΔΔ
                     (17) 

The Lagrange multipliers may now be eliminated and the resulting linear state-space 
form of the equations of motion is 

( ) ( )

( ) ( )

q t t q t

q t t q t

+ Δ⎧ ⎫ ⎧ ⎫
= Χ⎨ ⎬ ⎨ ⎬+ Δ⎩ ⎭ ⎩ ⎭

                              (18) 

where      

( )1 1 1 1

1 1 1 11

T T

T T

M t M

M M
t

− − − −

− − − −

⎡ ⎤Ι − Β Α Β Δ Ι − Β Α Β
⎢ ⎥

Χ = ⎢ ⎥− Β Α Β Ι − Β Α Β⎢ ⎥
Δ⎣ ⎦

           (19) 

where 1 TM −Α =Β Β . The condition for stability of this system of equations is       

( ) 1ρ Χ ≤                                           (20) 

where ρ (X) is the spectral radius of the matrix X. A similar result may be derived for the 
Baumgarte method with the result         

( ) ( )

( ) ( )

q t t q t

q t t q t

+ Δ⎧ ⎫ ⎧ ⎫
= Λ⎨ ⎬ ⎨ ⎬+ Δ⎩ ⎭ ⎩ ⎭

                               (21) 

Where       

( )2 2 1 1 1 1

2 1 1 1 1

2

2

T T

T T

t M t t M

t M t M

β α

β α

− − − −

− − − −

⎡ ⎤Ι − Δ Β Α Β Δ Ι − Δ Β Α Β
Λ = ⎢ ⎥

−Δ Β Α Β Ι − Δ Β Α Β⎢ ⎥⎣ ⎦
       (22) 

The condition for stability for the Baumgarte method is  

                               ( ) 1ρ Λ ≤                                                (23) 

Note that the choices 10.5 tα −= Δ  and 1tβ −= Δ  would result in the Baumgarte stabili-

zation method having the same spectral radius as our implicit method as the differing 
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terms were discarded in the linearization. In order to investigate the stability of the 
methods further we consider the simple problem of a planar double pendulum with 
links modeled by point masses. The equations of motion are written using Cartesian 
coordinates thus we have two constraints that force the link lengths to be constant. 
The link lengths considered are unity as are the point masses. The constraints are 
linearized about a co-linear position and the resulting constraint jacobian for this 
linearized system is         

2 0 0 0

2 0 2 0

⎡ ⎤
Β = ⎢ ⎥−⎣ ⎦

                                (24) 

For this case, ρ(X) ≤ 1 for all Δt thus the implicit constraint enforcement method is 
unconditionally stable. The stability behavior of the Baumgarte’s stabilization de-
pends on the selection of the parameters α and β. For example, if we select α,β = 10 
the resulting stability limit is Δt ≤ 0.83. If we select parameters 1t −= Δα  and 

1tβ −= Δ which give us a critically damped response with time constant proportional to 

Δt we will find that the system is unstable. Therein lies the difficulty in parameter 
selection for Baumgarte’s stabilization technique. Improper choices for the parame-
ters α and β often results in time step limitations due to stability or in the time con-
stants associated with constraint satisfaction being too slow. One of the advantages of 
the simple implicit constraint enforcement scheme described in this paper is that the 
search for a good choice of parameters need not be undertaken and, as we will show, 
the method produces accurate results. For the comparisons in the rest of this paper we 
will use the parameter selections 10.5 tα −= Δ  and 1tβ −= Δ for the reasons cited above. 

We note that these parameter selections specify a damping coefficient of 0.5 and a 
time constant on the order of the time step for constraint satisfaction.  

4   Implicit Non-holonomic Constraints Enforcement 

Non-holonomic constraints typically restrict velocities for points on objects. In the 
development that follows the implicit constraint enforcement technique is developed 
using functional dependences on the center of gravity coordinates only. Extension to 
dependence on orientation coordinates follows identical development. The equations 
of motion for the non-holonomic constraint can be written as  

              ( )N

r or r vΦ =                                        (25) 

Following our earlier philosophy the constraint written at new time is                   

( ( )) ( ) ( )N

r or t t r t t v t tΦ + Δ + Δ = + Δ                       (26) 

Next a Taylor series expansion is written to the same order as the discrete equations: 

( )
( )

( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ) ( ) )

( ( )) ( ) ( ( ) ( ) )

N N N

r r r r

N

r r

r t t r t t   r t r t r t r t r t t r t

 r t r t r t t r t

Φ + Δ + Δ = Φ + Φ + Δ −

+ Φ + Δ −
  (27) 
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where the subscript r indicates partial differentiation with respect to r . After simplifi-
cation we have: 

 ( )( ( )) ( ) ( ( )) ( ) ( ( ) ( ) ) ( ( )) ( )N N N

r r rr
r t t r t t r t r t r t t r t r t r t tΦ + Δ + Δ = Φ + Δ − + Φ + Δ (28) 

Equation (7) may be used to eliminate ( )r t t+ Δ to obtain  

( )( ( )) ( ) ( ( )) ( ) ( ) ( ( )) ( )N N N

r r rr
r t t r t t t r t r t r t t r t r t tΦ + Δ + Δ = Δ Φ + Δ + Φ + Δ    (29) 

The first term may be written to second order replacing ( )r t t+ Δ with ( )r t resulting in  

 ( )( ( )) ( ) ( ( )) ( ) ( ) ( ( )) ( )N N N

r r rr
r t t r t t t r t r t r t r t r t tΦ + Δ + Δ = Δ Φ + Φ + Δ      (30) 

Equation (6) may be used to eliminate ( )r t t+ Δ  and the result is substituted into Equa-

tion (32) to obtain the linear system that must be solved for the Lagrange multiplier: 

( )1 1 ( )1N N T N N N o
r r r r r

r

v t t
M r M F r r

t t
λ− − + Δ

Φ Φ = Φ + Φ + Φ −
Δ Δ

       (31) 

Note that we obtain the desirable symmetric positive definite linear system as we did 
with the holonomic case. The development for the case with orientation variable de-
pendence of the constraints is identical. Once this system is solved for the Lagrange 
multipliers equations (6) through (9) are used to update the other variables. Baumgarte’s 
stabilization for the non-holonomic case begins with the constraint function written as 
g(t) = 0. Baumgarte’s stabilization may be expressed as (Greenwood [8]). 

                         22 0
t

o
g g gdtα β+ + =∫                               (32) 

For our case we write 

( )( ) 0N
r og t r r v= Φ − =                                (33) 

and Baumgarte’s stabilization becomes 

( ) ( ) ( )1 1 2

0

2
t

N N T N N N N

r r o r r r o r or
M v r r M F r v r v dtλ α β− −Φ Φ =− + Φ + Φ + Φ − + Φ −∫  (34) 

Note again the appearance of extra terms in when using Baumgarte’s stabilization and 
in particular the appearance of the integral that must be calculated. In the results that 
follow we evaluate the integral with a first-order method consistent with the method 
used to integrate the ODE’s. 

5   Experiments 

To verify the accuracy of the proposed holonomic and non-holonomic implicit con-
straint enforcement, we performed a three-link rigid bar simulation in Fig. 1. Three 
separate rigid bars are connected by three spherical joints. The non-holonomic  
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(a) Initial state of rigid bar      (b) The motion of rigid-bar during simulation 

Fig. 1. The three-link rigid bar simulation with holonomic and non-holonomic constraints. The 
green circle indicates the trajectory of the point where the non-holonomic constraint is applied. 

  
(a) Implicit constraint error using tΔ  = 0.01      (b) Baumgarte constraint error using tΔ  = 0.01 

  
(c) Implicit constraint error using tΔ  = 0.001 (d) Baumgarte constraint error using tΔ  = 0.001 

Fig. 2. Comparison of holonomic and non-holonomic constraint errors for three-link rigid bar 
simulation 
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constraint is applied on the top end of the first link. The point in the end of this link 
has a circular velocity prescribed. The constraint is integrable but we treat it as a non-
holonomic constraint for illustration purposes. The prescribed velocity results in the 
circular movement of the end point of the link in the x-y plane.  

We recorded the holonomic and non-holonomic constraint errors over a time dura-
tion of 50 seconds and the results are shown in Fig 2. The Baumgarte stabilization 
parameters used are 10.5 tα −= Δ  and 1tβ −= Δ . The results shown indicate somewhat 

better results for the non-holonomic constraint errors with our method and similar 
results for the holonomic constraint errors. These results are typical of what we have 
observed and we note that if we do not include the integral in the Baumgarte method 
the results are less accurate. 

6   Conclusion 

This paper describes an implicit constraint enforcement method for rigid body simula-
tions with both holonomic and non-holonomic constraints. Our implicit constraint 
enforcement method has several advantages. This method is implicit thus it has desir-
able stability characteristics. The method does not require problem dependent parame-
ters and does not require an integral computation for the non-holonomic case. The 
method is simple to implement, requiring fewer terms than Baumgarte stabilization. 
The method results in a symmetric positive definite linear system identical to that in 
Baumgarte stabilization. The method is easily extended to second order and the sec-
ond order method will appear in future work.  
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