
Interactive Manipulation of Articulated Objects

with Geometry Awareness

Min-Hyung Choi James F. Cremer

choi@cs.uiowa.edu cremer@cs.uiowa.edu

Computer Science Department

The University of Iowa

Iowa City, IA 52242

Abstract

Techniques for interactive 3D manipulation of ar-

ticulated objects in cluttered environments should be

geometrically aware, going beyond basic inverse or for-

ward kinematics to allow contact while preventing in-

terpenetration. This paper describes a general pur-

pose interactive object manipulation technique using

nonlinear optimization. The method converts geome-

try awareness into sets of inequality constraints and

handles nonlinear equality and inequality constraints

e�ciently without restricting object topology. Our

iterative algorithm has a quadratic convergence rate

and each iteration can be solved in O(nnz(L)), where
nnz(L) is the number of non-zeros in L, a Cholesky

factor of a sparse matrix. To promote additional

speedup, symbolic factorization is separated from nu-

merical computation. Our approach provides a frame-

work for using optimization techniques in interactive

tools for building and manipulating models in con-

strained, cluttered environments.

1 Introduction

Many interactive graphical applications incorpo-

rate direct manipulation as a dominant interaction

method for con�guring and arranging graphical ob-

jects. Emerging applications in 3D virtual environ-

ments, such as scene setup, object assembly, and pos-

ing a virtual character, require more sophisticated yet

natural manipulation schemes. Traditional manipu-

lation techniques that employ forward kinematics or

other direct manipulation of object state do not pro-

vide convenient control of complex object con�gura-

tions. Techniques based on inverse kinematic and op-

timization techniques address this problem, but so far

are limited to speci�c structures or are too slow for

interactive use.

The most serious de�ciency of previous approaches

is that they fail to support collision detection and pen-

etration avoidance, which ensure physically plausible

object behavior during manipulation. This lack of ge-

ometry awareness can be crippling in cluttered envi-

ronments where contact and interaction between ob-

jects is natural and desirable. A system that auto-

matically prevents interpenetration during manipula-

tion can make complex scene creation and character

manipulation substantially easier and less tedious.

An interactive graphical manipulation system

should meet several requirements. First, it must be

fast enough to be used interactively regardless of both

object con�guration topology and constraint types.

Object and constraint representations should be mod-

ular and 
exible so that new types of constraints can

be easily added. Under- and over-determined situa-

tions should produce reasonable behavior. And, ge-

ometry awareness should be provided so that object

behavior during manipulation is plausible.

This paper presents a method for geometrically-

aware interactive manipulation of 3D objects, empha-

sizing the numerical algorithms. In our approach, we

cast object manipulation into a nonlinear optimiza-

tion problem involving equality and inequality con-

straints. The method does not restrict object topol-

ogy, and uses unreduced coordinates for 
exibility and

scalability. Interactive speed results from taking ad-

vantage of the special structure and sparsity of the

problem. Section 2 presents background material and

related work. In section 3, we give an overview of our

interactive system. Section 4 presents the formulation

of the nonlinear optimization problem used for object

manipulation. Section 5 details the method for e�-

ciently solving the optimization problem.



2 Background and Related Work

The importance of sophisticated 3D manipulation

techniques is based partly on a desire for interaction

that looks and feels similar to real world object manip-

ulation. To provide a consistent and intuitive interac-

tion that resembles interaction with real world objects,

we provide users a simple metaphor: grab any part of

the object and drag or pull it to the intended con�gu-

ration, letting the system take care of the underlying

computation.

The inverse kinematics problem has been studied

extensively in the robotics �eld, although it is fairly re-

cently that the techniques have been adopted in com-

puter graphics and animation. In robotics, much of

the e�ort is concerned with the functionality of par-

ticular manipulators, sometimes with a few redundant

degrees of freedom. Extension of robotics techniques

to more general con�gurations and situations will be

of great value in computer graphics and virtual envi-

ronments applications.

In computer graphics, there have been a number

of attempts to address the problem of manipulation

of redundant articulated objects. Jack[5] uses a re-

duced coordinate system and nonlinear optimization

techniques to solve inverse kinematics for a human

model. Zhao[17] added collision avoidance to Jack but

this simple augmentation using bounding spheres and

cylinders does not support precise geometry awareness

to allow contact or prevent interpenetration between

objects in close proximity. Gleicher's[11] di�erential

method casts the graphical manipulation problem to a

nonlinear optimization problem, linearizing it to make

the problem easier to solve.

Snyder[13] addresses geometry awareness but not

for articulated objects. The work investigated the gen-

eration of stable non-interpenetrating con�gurations

of curved-surface objects.

Interactive dynamics simulation may also be used

as a basis for object manipulation[6, 15]. Interac-

tive dynamics simulation can provide fairly physically

accurate results, accounting for friction and inertia

in addition to geometry awareness. As good haptic

feedback interfaces are developed, advanced interac-

tive dynamic approaches should prove quite attrac-

tive. The reason for our investigation of a purely kine-

matic approach is that we feel that the use of dynam-

ics raises as many problems as it addresses. The ad-

ditional quantities involved in the computations con-

tribute to generally less e�cient and more complicated

algorithms. Furthermore, an advantage of a kinemat-

ics approach is that intermediate states in a manipu-

lation do not need to be dynamically plausible. Our

Figure 1: A challenging manipulation problem

primary goal is to give users control over the manipu-

lation and to get reasonable results quickly.

Figure 1 shows initial and �nal con�gurations of

a challenging problem in human �gure manipulation:

sitting on a chair. A good manipulation system would

allow users to interactively drag the human �gure from

a standing to a sitting position, automatically allow-

ing contact but preventing penetration between the

human and the chair.

3 Overview of approach

We have developed an interactive 3D object manip-

ulation system incorporating the algorithms described

in this paper. Joints or hinges are modeled with equal-

ity constraints while \geometry awareness" is achieved

by using inequality constraints to prevent object inter-

penetration. The system supports three interaction

techniques, each appropriate in di�erent situations:

For Dragging, the system continuously polls the

mouse location and uses the polled locations as inter-

mediate goals. In this mode, we require the algorithm

to quickly achieve a moderately accurate solution at

each intermediate goal, with a more accurate solution

at the end of move. For smooth interaction, the sys-

tem must provide intermediate goal solutions within

the interval between mouse polls (typically, approxi-

mately 0.1 second).

Pull to goalmay be used to specify goal trajectories.

The user speci�es a desired path for points on the

manipulated object. Based on the path, the system

generates closely spaced intermediate goals and solves

for them, animating the intermediate results.

In the Solve for goal scheme, a user directly speci�es

desired �nal goal constraints. The system solves for

and displays a con�guration meeting the constraints.



Figure 2: Snapshot of manipulation interface

Objects jump to the new con�guration, providing the

user no information about how to reach it from the

initial con�guration.

The di�erent interaction schemes involve solv-

ing nonlinear optimization problems using di�erent

step sizes and varying distances between intermediate

goals. \Constraint drift" is not a problem since con-

straints are satis�ed within default or user-speci�ed

tolerances at each intermediate goal, as well as at the

�nal goal. The following is an outline of the top-level

implementation of the Dragging interaction scheme.

while (manipulation is not �nished) f
Generate intermediate goal by polling mouse;

Save current state;

if(constraint update conditions are met)

Update active constraints set;

Solve one step of nonlinear optimization;

if(interpenetration has occurred)

f
Restore previous state;

Using interpenetration and nearest distance

information, formulate inequality constraints

that will prevent interpenetration in next step;

Add inequality constraints to optimization problem;

Solve one step of nonlinear optimization;

g

g

Figure 2 is a snapshot from the user-interface of

our system handling a closed-loop articulated objects.

The system allows users to assemble complex �gures

by adding and deleting constraints interactively. The

software is modular and supports comparison of a vari-

ety of object manipulation algorithms. In addition to

the new methods described in this paper, the software

includes implementations of several other methods.

4 Formulation: Object Manipulation

as Nonlinear Optimization

We cast object manipulation as a constrained non-

linear optimization problem. Considering that there

is an in�nite number of solutions for the under-

determined case and we want to get a reasonably

close solution when an exact solution is not avail-

able, nonlinear optimization has a number of advan-

tages. Depending on the situation, we can experiment

with di�erent objective functions while still maintain-

ing kinematic constraints. Furthermore, incorpora-

tion of inequality constraints is not very di�cult in

our optimization approach. Equation 1 represents an

objective function to achieve the \Principle of Least

Astonishment"[7] which suggests the system should

move as little as possible from the previous con�gura-

tion.

E(q) =
1

2
kq � q0k

2
(1)

Combining this objective function E(q) with kine-

matic equality constraints, �i(q), and inequality con-

straints, �j(q) for geometric awareness, we formulate
the object manipulation problem as the nonlinear op-

timization problem:

minimize E(q) q = q1; q2; ::; qn
s:t: �i(q) = 0; i = 1::meq ; j = 1::mineq

�j(q) > 0; meq +mineq = m
(2)

4.1 Object representation

Object representations fall into two general cate-

gories, reduced coordinates and unreduced, or full,

coordinates[6]. Reduced coordinate approaches de-

scribe objects using minimal sets of state variables,

corresponding in size to the number of available

degrees of freedom. With reduced coordinate ap-

proaches, constraint drift does not occur, but it is rel-

atively di�cult to modify the constraint set on-line

and e�ciently reparameterize it to new minimal coor-

dinates. In contrast, full-coordinate methods express

system state using a maximal set of coordinates cor-

responding to degrees of freedom of objects when un-

constrained. Constraint maintenance is achieved by

explicitly accounting for constraints in the solution

methods.

We describe each object's state with 7 variables:

rx; ry; rz for the center of the object's local reference

frame, and Euler parameters er; ex; ey; ez for the ob-

ject's orientation. Employing full coordinates and ex-

plicit constraints facilitates development of a 
exible



algorithm that supports on-line constraint set changes

and that can be implemented cleanly and modularly.

Many useful constraints, including but not limited to

standard mechanical joints, are conveniently repre-

sented by nonlinear equalities. Examples include:

� spherical joint : r1+A1c1� r2�A2c2 = 0, where

Ai is a rotation matrix dependent on the Euler

parameters and ci is a body-�xed vector describ-

ing the joint attachment point.

� point - surface attachment: n2�((r1+A1c1)�p2) =
0, where n2 is the surface normal and p2 a point

on the surface.

� point goal: r1 + A1c1 � pgoal = 0, where pgoal is
the goal position for the speci�ed object 1 point.

4.2 Geometry awareness as nonlinear in-
equality constraints

To incorporate geometry awareness into the ma-

nipulation system, robust and very e�cient collision

detection and nearest feature identi�cation methods

must be tightly integrated with the nonlinear opti-

mization algorithms. Most collision detection pack-

ages do not meet the needs of manipulation systems;

some provide simple \interpenetrating/not interpene-

trating" results, while others compute minimum dis-

tances without robustly identifying nearest features.

We use a new geometric computing package devel-

oped by Mirtich[12] that provides very fast collision

detection, distance computation, and nearest feature

identi�cation.

In our manipulation algorithm, interpenetration

checks are performed at every iteration. When in-

terpenetration occurs, the state at the previous step

is restored, and nearest feature information is used

to formulate a non-interpenetration inequality con-

straint. This inequality constraint is added to the

optimization problem's constraint set, preventing re-

interpenetration of the o�ending features when the so-

lution step is retried.

The size of the inequality constraint set is kept

small by removing inequalities when feature distance

grows beyond a certain size or a feature leaves the

relevant Voronoi bounding region. In our approach,

geometric analysis is somewhat di�erent from existing

methods in dynamic simulation because constraints

are monitored at non-very-small distances. Formulat-

ing and maintaining the appropriate inequality con-

straint set is an interesting and non-trivial problem.

Details of this aspect of geometric analysis are pre-

sented in [9]. In this paper, assuming the appropriate

geometric inequality constraints are given, we focus

on the algorithms for e�ciently solving the formulated

optimization problem.

5 Solving the Nonlinear Optimization

Problem

The key challenge for achieving interactivity is e�-

ciently solving the constrained nonlinear optimization

problem. Our method converts the optimization prob-

lem into a system of nonlinear equations. We can ex-

ploit special aspects of the formulation to achieve the

needed performance. First, the system is sparse and

block structured. Second, each solution step begins

from a starting point at which all constraints except

the goals are satis�ed.

Assuming that inequality constraints have been re-

placed by equalities as described in Section 5.5, the

Lagrangian function[10] is de�ned as

L(q; �) = E(q) +
X

�i�i(q): (3)

The �rst order necessary condition for the existence of

a local minimizer q� of the objective function of Equa-
tion 1 requires the existence of a Lagrange multiplier

�� satisfying Karush-Kuhn-Tucker(KKT) condition

rqL(q�; ��) = rE(q�) +
X

�ir�i(q
�

) = 0 (4)

Combining this with the original constraints yields

F

�
q
�

�
=

�
q � qo � J(q)T � � = 0

�i(q) = 0

�
(5)

where J is the Jacobian of the constraints �i. The

nonlinear optimization problem has become a well-

balanced system of n+m equations in n+m variables.

Newton's method converges quadratically if the start-

ing point is within a certain range[10]. Depending

on the choice of user interface scheme, and the dis-

tance between intermediate goals, the starting point

may not be in the range that guarantees convergence.

If the intermediate goal is too far away for the nu-

merical system to converge, the path is interpolated

and subdivided to provide a sequence of intermediate

goals. We can solve the nonlinear system as follows:

rF =

�
I �JT

�J 0

�
(6)

rF� = �F

�
q
�

�
; qn+1 = qn + � (7)



Since Dragging produces very close goals, and corre-

spondingly good starting points, less than 3 iterations

of system solving usually su�ce. The iteration is ter-

minated if the errors for all equations are less than

1.0E-5. In graphical object manipulation where ob-

jects are displayed on a rasterized screen, a tolerance

within one pixel is acceptable in many applications.

5.1 Two possible solution techniques

The key issue is to solve linear system 7 e�ciently.

If we rewrite equation 7 as

�
I �JT

�J 0

��
�1
�2

�
=

�
b1
b2

�
(8)

and multiply the upper row by J , then

J�1 � JJT �2 = Jb1
�J�1 = b2

(9)

leading to

JJT �2 = �b2 � Jb1 (10)

We call equation 10 a normal equation of the linear

system 8. This normal-equation-based method has a

number of desirable properties. First, assuming that

J has full rank, JJT
is symmetric and positive de�-

nite. Furthermore, the size of the system is usually

signi�cantly smaller than the original linear system 7.

One drawback is that even if J is sparse, JJT
can be

completely dense depending on the topology of the

bodies. For example, a star topology, in which every

object is constrained with a central object, has com-

pletely dense JJT
even when J is sparse, due to the

existence of single dense column.

The other solving technique is to solve 8 directly

using LDLT
factorization, because it is always sparse

regardless of the structure of J . Vandervei [14] showed
that any symmetric permutation of a quaside�nite ma-

trix has a factorization LDLT
and proposed an e�-

cient sparse algorithm. The main advantage of this

approach is that it is not hampered by a few dense

columns in J .
In this paper, we show how to alleviate the problem

of dense columns in the normal equation approach.

When dense columns occur, we rearrange and expand

the system. When there are no dense columns we we

simply take advantage of small system size of the nor-

mal equation and use e�cient LLT
Cholesky factor-

ization. Studies show that the Cholesky factorization

based on normal equation method is usually preferred

[16] if the upper left corner block of the linear system

8 is a diagonal matrix.

5.2 The dense columns in JJ
T

To avoid dense decomposition we employ the mod-

i�ed Schur complement method[4]. The main idea is

to rewrite the normal equation system 10 into2
4 (AsA

T

s
+ FF T

) AD F
AT

D
�I 0

F T
0 I

3
5
2
4 �



�

3
5 =

2
4 b

0

0

3
5 (11)

where As and AD are sparse and dense columns of J
respectively. Since we separate J , there's no guarantee
that AsA

T

s
is nonsingular[4]. We choose F such that

each column of F contains only one non-zero to make

AsA
T

s
+ FF T

(12)

nonsingular. This demonstrates that FF T
only mod-

i�es the diagonal elements of AsA
T

s
and the revised

matrix can be solved with the same sparse Cholesky

factorization as the original matrix.

5.3 Separating Symbolic Factorization
from Numerical Computation

To take advantage of sparsity and block structure,

we separate symbolic factorization from numerical

computation. First, row and column orderings are de-

termined such that the �ll-in in the Cholesky decom-

position L is minimized. Since the problem of choosing

an ordering that minimizes �ll-in is NP-hard[2], we use

the approximate minimum degree heuristic(AMD)[1].

Second, the non-zero structure of the Cholesky fac-

tor is determined and sparse storage is allocated ac-

cordingly. This takes care of indexing and associated

bookkeeping so that the actual numerical factoriza-

tion takes place only for the non-zero elements. If the

structure of JJT
is unchanged during the iterations,

we can do the symbolic decomposition just once, re-

peating only the numerical part thereafter.

5.4 The Push Cholesky Algorithm

Our sparse factorization method is based on the

push Cholesky algorithm[2]. L(i:j)k denotes the kth
column from row i to j.

1. for j = 1, ... m

2. Ljj :=
p
Ljj

3. L(j+1:m)j := L(j+1:m)=Ljj

4. for k = j + 1, ... m

5. if Lkj 6= 0

6. L(k+1:m)k := L(k+1:m)k � LkjL(k+1:m)j

The Push Cholesky Algorithm



Although the algorithm is presented in columns,

the actual computation is usually performed for few

elements in a column. For example, in step 6, only

the non-zero components of L(k+1:m)j are subtracted.

However, since a column is used to update another

column, when the non-zero structures of two columns,

L:j and L:k, don't correspond, we pay a bookkeeping

penalty in the sparse algorithm. A supernode tech-

nique is used to get around this problem and even-

tually to achieve faster sparse solving [2]. A supern-

ode is a set of adjacent columns in L with the same

non-zero pattern below the diagonal of the previous

column[2]. By regrouping columns using the supern-

ode technique, all columns in the supernode update

exactly the same position in the subsequent columns.

Furthermore, loop unrolling is possible by employing

the supernode[3]. With most common memory archi-

tectures having at least 2 levels of cache, loop unrolling

leads to speedup by taking advantage of locality of

memory access. Since the loop from step 4 to step 6 is

performed only for few non-zero elements in a column,

the asymptotic complexity of this sparse Cholesky fac-

torization isO(nnz(L))[2], where nnz(L) is the number
of non-zeros in L.

5.5 Inequality Constraints

A common way to handle inequality constraints in

nonlinear optimization is to add a logarithmic barrier

function. As in 13, we take the logarithm of all in-

equality constraints and subtract the resulting terms

from the original objective function.

minimize kq � q0k
2
� �

P
log�j(q)

s:t: �i(q) = 0

i = 1::meq ; j = 1::mineq ; meq +mineq = m

(13)

If any inequality constraint is violated, the log function

goes to negative in�nity and, consequently, objective

function goes to the positive in�nity. For the Newton's

direction, we need rF and the linear system becomes

�
W �JT

�J 0

��
�1
�2

�
=

�
b1
b2

�

W = r2E(q) + �
Ph

1
�2

j
(q)
r�j(q)r�j(q)

T

� 1
�j(q)

r2
�j(q)

i (14)

where W represents a derivative of the objective func-

tion. An implicit assumption is that the starting point

must satisfy all inequality constraints. There are two

main disadvantages of this approach. An appropriate

coe�cient for the logarithmic barrier function must

be selected to ensure convergence and numerical sta-

bility. Furthermore, choosing an e�cient sparse linear

system solving algorithm may depend on the struc-

ture of the upper left corner block W . The normal

equation method requires an inverse of W . Since W
is a general symmetric matrix, it is costly to invert.

W becomes diagonal matrix only if all the inequality

constraints are simple bounds. A modi�ed nonlinear

optimization formulation 15 shows how to eliminate

problems related to the barrier function approach.

minimize E(q; Y )
s:t: �i(q) = 0

�j(q)� Y 2
j
= 0

(15)

All inequality constraints are converted into equal-

ity constraints by introducing new variables Y . The

square of Y ensures that �j(q) is greater than or equal
to zero. Since we don't use logarithmic barrier func-

tion, the upper left block W becomes an identity ma-

trix. Therefore, the push Cholesky algorithm based

on the normal equation formulated for systems with

equality constraints can be used directly. The number

of variables increases by the number of active inequal-

ity constraints.

To ensure e�ciency, it is important to keep the set

of active inequality constraints as small as possible. As

mentioned in Section 4.2, details of our geometric anal-

ysis are presented in [9][8]. The monitoring and man-

agement of inequalities are important for the overall

performance, because constraint addition or deletion

can alter the block structure and necessitate further

symbolic manipulation.

5.6 Over-determined case

Con
icting or unreachable goals yield a singular

constraint matrices. Singular value decomposition

methods can be used to solve such problems, but are

expensive. In some cases, we alter the objective func-

tion to help the system �nd a reasonably close solution

in a least-squares sense. The objective function then

becomes a least squares summation of the Euclidean

distance between goal positions. In other cases, we

use a di�erent technique, called damping to make the

matrices non-singular. By altering JJT
with small di-

agonal elements of �I , we can avoid trying to solve a

singular system.

From a user interface point of view, over-

determined cases can be avoided or solved by provid-

ing users a chance to evaluate the situation. Since

users get continuous feedback, when there are con-


icting goals or the goals can't be reached, users might



know how to guide the the system around the problem.

Similar user interface scheme can be applied when the

system is trapped in local minima.

6 Results and concluding remarks

In this paper, we described a general purpose

\geometry aware" 3D object manipulation technique

based on constrained nonlinear optimization. Over-

all, this work combines new developments in geometric

analysis and nonlinear optimization to provide inter-

active manipulation capability beyond what has been

provided before. The e�cient sparse algorithm allows

users to manipulate complex object con�gurations in-

teractively. The method scales well with the number of

objects and active equality and inequality constraints.

Our experiments show that the push Cholesky algo-

rithm performs well and scales nearly linearly. Tests

were run on an SGI O2 workstation with a 175MHz

R10000 processor and a PC with 400MHz Pentium

II processor. A test con�guration with 212 variables

and 1455 non-zero elements, roughly 96% sparse, takes

less than 7.5ms per solution on the PentiumII. This in-

volves three sparse Cholesky solves and function eval-

uations. System performance does not degrade in the

presence of closed loop con�gurations or inequality

constraints.

Although various interaction metaphors are avail-

able in the form of 3D widgets, it remains di�cult to

manipulate 3D �gures with a 2D input device. Fur-

ther work is necessary to develop e�ective 3D inter-

faces supporting powerful yet convenient interactions.

Extension of this work to include deformable objects

is another area ripe for future work; the human �gure

manipulation \challenge problem" of Figure 1, can-

not be solved fully adequately without accounting for

object deformability.

Acknowledgments Partial support for this work was

provided by O�ce of Naval Research grant N00014-96-1-

0269. We thank Yinyu Ye and Xiong Zhang for helpful ad-

vice on the formulation and solution of optimization prob-

lems.

References

[1] Patrick R. Amestoy, Timothy A. Davis, and Iain S.

Du�. An approximate minimum degree ordering al-

gorithm. SIAM Journal on Matrix Analysis and Ap-

plications, 17(4):886{905, October 1996.

[2] E. D. Andersen and K. D. Andersen. The APOS lin-

ear programming solver: an implementation of the

homogeneous algorithm. Technical report, Depart-

ment of Management, Odense University, Denmark,

March 1995.

[3] E. D. Andersen, J. Gondzio, C. M�esz�aros, and X. Xu.

Implementation of interior-point methods for large

scale linear programs. In Interior point methods of

mathematical programming, pages 189{252. Kluwer,

Dordrecht, The Netherlands, 1996.

[4] Knud D. Andersen. A modi�ed Schur-complement

method for handling dense columns in interior-point

methods for linear programming. ACM Transactions

on Mathematical Software, 22(3):348{356, 1996.

[5] Norman I. Badler, Cary B. Phillips, and Bonnie Lynn

Webber. Simulating Humans: Computer Graphics

Animation and Control. Oxford University Press,

New York, 1993. ISBN 0-19-507359-2.

[6] D. Bara�. Linear-time dynamics using Lagrange mul-

tipliers. Computer Graphics (SIGGRAPH '96 Pro-

ceedings), 30(2):137{146, 1996.

[7] Lee Alton Barford. A graphical, language-based

editor for generic solid models represented by con-

straints. Technical Report TR87-813, Cornell Univer-

sity, Computer Science Department, March 1987.

[8] Min-Hyung Choi. Geometry Awareness for Interac-

tive Object Manipulation. Ph. D. thesis, Department

of Computer Science, University of Iowa, 1999.

[9] Min-Hyung Choi and James F. Cremer. Geometric

awareness for interactive object manipulation. In Pro-

ceedings of Graphics Interface '99, June 1999.

[10] R. Fletcher. Practical Methods of Optimization, 2nd

ed. John Wiley, New York, 1987.

[11] M. Gleicher. Di�erential Approach to Graphical Ma-

nipulation. Ph. D. thesis, School of Computer Science,

Carnegie Mellon University, 1994.

[12] Brian Mirtich. V-Clip: Fast and robust polyhedral

collision detection. ACM Transactions on Graphics,

17(3):177{208, July 1998.

[13] J. Snyder. An interactive tool for placing curved sur-

faces without interpenetration. Computer Graphics

(SIGGRAPH '95 Proceedings), 29(2):209{218, 1995.

[14] R. Vanderbei. Symmetric quasi-de�nite matrices.

SIAM Journal of Optimization, 5(1):100{113, 1995.

[15] Andrew Witkin, Michael Gleicher, and William

Welch. Interactive dynamics. In Symposium on In-

teractive 3D Graphics, pages 11{21, March 1990.

[16] Y. Ye and E. D. Andersen. On a homogeneous al-

gorithm for the monotone complementarity problem.

Technical report, Department of Management Sci-

ences, The University of Iowa, 1997.

[17] Xinmin Zhao and Norman Badler. Near real-time

body awareness. Computer Aided Design, 26(2):248{

253, 1994.


