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Abstract 
 

This paper describes an effective and intuitive method 
to control deformable objects using geometric 
constraints. To achieve a natural and plausible 
interaction with deformable objects and to setup the 
desirable initial conditions of simulation, users should be 
able to define and control the geometric constraints 
intuitively. Users should be able to utilize the simulation 
as a problem solving platform by experimenting various 
simulation situations without major modification of the 
simulator.  

The proposed constraint-based simulation system 
solves the problem using a non-linear FEM approach to 
represent deformable objects and constraint forces are 
generated by defining geometric constraints on the nodes 
of the object to apply the restriction. It allows users to 
define and modify geometric constraints and an 
algorithm converts these geometric constraints into 
constraint forces which seamlessly integrate 
controllability to the simulation system. Simulator can 
handle linear, angular, inequality based geometric 
constraints on the objects. Our experimental results show 
that constraints are maintained in the tight error bound 
and preserve desired shape of deformable object during 
the entire simulation.  

 
 
1. Introduction 
 

Due to the increasing demand of visual realism in 
computer animation and medical visualization, simulation 
of deformable model is becoming a major issue. To 
accomplish sophisticated visual realism, the physically 
based representation of object deformation is essential. In 
addition, intuitive control of deformation becomes an 
even more important issue, since deformable objects, 
unlike rigid objects, change their formation continuously 

and defining and enforcing geometric constraints are not 
trivial. Especially, modeling the deformation system of 
human organs for surgical simulation is extremely 
complex. For instance, human articulations consist of 
different layers of tissues, bones, ligaments, and tendons. 
In addition, organs are surrounded by other organs and 
the physical properties of these human organs and tissues 
are not well-known. Under this situation, the intuitive 
geometric constraints can be a good role to control soft 
objects for surgical simulation.  

Modeling and simulation of deformation under 
external forces have been well-studied using various 
techniques such as Mass-spring Model, FEM (Finite 
Element Method), and BEM (Boundary Element 
Method). However, to be practically used in various 
simulation environments, ability to instinctively define 
and enforce geometric controls with physical accuracy is 
very important. The penalty method which has been 
applied to solve the inter-penetration between two 
colliding elastic bodies   uses extra energy terms to force 
the constraints, but it is not accurate and can be a delicate 
situation to find proper penalty coefficients [11]. Further 
penalty method needs tiny time steps to create visually 
satisfactory animations [12]. This involves significant 
computations which makes it difficult for real time 
simulation. In our simulator, geometric constraints are 
formulated and enforced to maintain the restrictions 
between nodes. The constraints are seamlessly integrated 
into the FEM based deformation model.  

The rest of this paper is organized as follows: We 
provide comprehensive related work on geometric 
constraints and some different modeling approach of soft 
objects in section 2. The brief overview of nonlinear FEM 
model is elaborated in section 3. Section 4 describes that 
the computations involved in defining geometric 
constraints and some types of constraints are discussed. 
We demonstrate the solution method how to apply and 
build node-node constraints in section 5. In section 6, we 
provide our experimental result with two examples.  



 
2. Related Work 
 

Geometric constraints related works have been well 
studied in mechanical engineering [13] but the standpoint 
of geometric constraint is different with computer graphic 
applications. Our objective is to achieve a reasonable 
visual appearance and accuracy in deformable object 
simulation and previous researches for controlling the 
objects using constraints are mainly investigated in rigid 
objects or free form deformations. The early effort which 
used hard springs to adjust the constraints gives similar 
effects as constraint forces, but it may generate stiff 
numerical conditions. The drawbacks of stiff condition 
are that the simulator should use small time steps for 
integration, which will result in unnecessary or excessive 
computation. Hence it cannot be applied to real-time 
interactive simulation. Lagrange multipliers method is 
widely used in rigid body dynamic simulation presented 
by Witkin et al [6] and Baraff [7]. Baraff introduced 
Lagrange Multipliers to avoid intractable problem of 
parameterizing a system’s degrees of freedom [2]. Witkin 
[1] introduced a fast method to generate physically based 
animation with geometric and dynamic constraints.  

In modeling of deformable objects view, soft object 
simulation has a long history from free form deformation 
to FEM. However, the focus of existing research was on 
the deformation modeling under given external forces. 
Intuitive control of the behavior of model during 
simulation has not been addressed to setup and create 
scenario of a simulation.  

FEM approach is used most often to produce 
deformation in animation and simulation. Terzopoulos et 
al. [4] introduced deformable elastic models to apply the 
principles of elasticity. Bro-Nielsen [5] has investigated 
modeling of the deformable human organs with FEM into 
surgical simulation. For more fast interactivity, Cotin et 
al. [8] investigated their effort to speed up FEM 
computation using hybrid method. They combined pre-
computation technique and tensor-mass method into 
surgical simulation and training to obtain real-time 
volumetric deformations and cutting operations. Unlike 
FEM, BEM only discretizes the boundary surface so this 
method is not very accurate. But this algorithm requires 
less computation time and more suitable for real-time 
interactive simulation [9]. 

 
 

3. FEM Model 
 
Simulating deformation is finding the displacement of 
every node per time step under Newtonian physics law.  
Mass-spring Model can be one way of modeling because 
it is a simple physical model, easy to program, and it 

demonstrates reasonably fast simulation speed. However, 
it is difficult to find proper spring coefficients and deal 
incompressibility of objects, so it may not address 
reasonable accuracy of deformation.  

  FEM is a well-known numerical continuum approach 
to compute the displacement of every node in elasticity 
analysis. The deformable object is discretized into a 
suitable number of finite elements. Analysis of 
deformable object deals with the computation of its 
internal and external forces and displacements of every 
node, which are initially unknown. These unknown 
variables can be obtained by solving a set of basic 
equations which govern the behavior of the object. 
Unfortunately linear FEM is not accurate for large 
deformations, but soft deformable objects usually can 
have large deformations. The linear FEM which does not 
allow reasonably accurate global behavior but it is 
another way of elasticity modeling [10]. Thus globally 
admissible nonlinear FEM is used in our simulator with 
explicit time integration for fast computation. In nonlinear 
FEM, the internal forces and deformations are measured 
by the strain which is nonlinear in displacement and 
velocity and the stress which is nonlinear in strain. The 
strain is measured using the right Cauchy-Green 
deformation tensor, FFC T= , which is invariant under 
rigid transformation. Using the linear formulation in 
FEM, the system equation is given as [10] 

 
fKuuDuM =++ &&&  

 
where the mass matrix M , the damping matrix D  and 
the stiffness matrix K  are constant. u  is an N-
dimensional vector of the discrete displacement field. f  
is the traction force vector. The above equation for 
nonlinear approaches takes the form 
 

( ) 0=++ uRuDuM &&&   
 

where ( )uR  is the internal force vectors due to 
deformation. Soft objects have small stiffness coefficients 
in all directions due to soft nature which will make 
explicit time integration schemes an appropriate choice 
and use of large time steps is viable [12].  Further the 
Mass matrix M  and Damping Matrix D  are 
approximated by diagonal matrices to reduce 
computational overheads.  Thus non-linear system of 
equations with approximated Mass and Damping 
matrices, and the use of appropriate time steps enables 
real time simulation of fairly large meshes. 
 
 
 



4. Geometric Constraints 
    

Constraints have to conserve the geometric 
characteristics such as distance between the nodes, angle 
between the adjacent surface elements, during simulation. 
For every simulation, there is a scenario that describes the 
initial conditions, constant external forces and relations 
that must be kept throughout the simulation. Users should 
be able to define and modify the relation of objects to 
adjust the conditions. These conditions can be described 
in polynomial equations 0)( =qC  where q  stands for a 
vector that uniquely defines the status of the entire 
simulation system. Typical constraints include fixed 
distance, and angles between nodes or a set of nodes. 
Geometric constraints are applied to pairs of nodes of the 
tetrahedral mesh and it is desired that the node pairs 
maintain their relative positions and do not get affected 
when external forces are applied on the deformable 
object, as a whole.  For example, the nodes at the point of 
contact of the wheels inner surface and the outer surface 
of a metallic rim always remain in contact, even when the 
external forces are applied on the top and bottom of 
wheel, as shown in Fig 1. In order to define such spoke-
like constraints, pairs of nodes with center as one 
arbitrary node and one node on the wheel are taken each 
time and a node-arbitrary node constraint is defined.  
Note that the node at the center of the wheel, even though 
is not part of the object can also be included as a 
constraint node, which we call as arbitrary node. Also one 
node can be applied as a constraint node with several 
other nodes. This enables ease of defining constraints to 
real world objects, which is often the case. 

 

 
Fig. 1 Defining Geometric Constraints 

 
The simulator can basically be applied to a variety 

objects and derived results depend on how the geometric 
constraints have been effectively applied. Based on how 
the constrained nodes are applied it is possible to 
introduce a skewed result of simulation. To avoid 
unreasonable or unnatural simulation, the user should 

study the constraints on various node pair operations by 
hit and trial and verify the output (the simulation).  

 Any relative condition between nodes, as long as it 
can be represented in algebraic equation and its partial 
derivatives exist, geometric constraints can be formulated 
and enforced in the simulator. The following constraint 
equations have been integrated to simulator.  
  
• Node-node constraints 
Node-node constraints preserve the distance between 
two nodes on the object. 

022
=−− Rqq ji  

here iq and jq are the node positions and ji qq ≠ . R is 

the desired distance between two nodes should be 
maintained during simulation. 
 
• Node-arbitrary point constraints 
Node-arbitrary constraints maintain the distance 
between a node on the object and a point which is a 
desirable position to fix on the outside of object. 

022 =−− Rqq ci  

where cq is arbitrary position which we want to fix 
specific node to some place. 
 
• Angular constraints 
Angular constraints restrict the angle between three 
nodes. 

022
=−• θVU

rr
 

U
r

is a vector of node position between iq and kq , V
r

is 

a  vector of node position between jq and kq , and θ  is 

the desirable angle to maintain. 
                                                 iq  

 kq jq  

V
r

 
 

• Parallel constraints 
Parallel constraints restrict two vectors in the parallel 
during the entire simulation. 

1
2
=•VU

rr
 

hereU
r

is a  vector of node position between iq and jq , 

V
r

is a  vector of node position between kq and lq . 

θ  

U
r



• Inequality constraints 
Inequality constraints set up the restriction for the node 
positions to be within a radius. Since Linear Solver 
system cannot solve inequalities, a variable W is added 
so that it becomes an equality problem, which is 
solvable. 

0222
=−−− WRqq ji  

 
All nodes which are constrained should satisfy the above 
equations. 

  
 
5. Solution Method 
 

Once the geometric constraints are defined, the 
constraints forces are computed to maintain the given 
constraints. The geometric constraints are represented 
with a set of equations. For example, suppose that the 
simulation requires restriction between two nodes (node-
node constraint). When 111 ,, zyx is position of one node 

and 222 ,, zyx is position of the other node, the distance 
r  between two nodes should be continuously maintained 
during the simulation. This node-node constraint can be 
defined by following equation: 

 
0)()()( 22

21
2

21
2

21 =−−+−+−= rzzyyxxC  
 

 If n is total number of nodes in the object, n3 vector 
q represents a state vector of each node position and 
W is nn 33 ×  inversed mass of node matrix which is 
diagonal elements contains the node’s masses, and F  is 

n3  global force vector. Suppose the simulation starts 
with position and velocity of nodes in legal 
state, 0== CC & , then C&& has to minimize close to 
0 with additional constraint force CF . From given 

constraint function C , C& can be computed by taking 

derivatives. The derivatives of C is 0=
∂
∂

= q
q
CC &&  and 

we can denote 
q
C
∂
∂

by J . J is Jacobian matrix of 

C which includes connectivity information of constraints. 
The time derivative of the Jacobian matrix 

gives 0
2

=
∂
∂

+
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∂
= q

q
Cq

tq
CC &&&&&  and we can denote 

tq
C
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∂2

by J&  as well.  Thus second derivative of constraint 

function can be  
 

0=+= qJqJC &&&&&&  
 

To solve unknown constraint forces cF , cF  added with 

previous global force vector F  and then acceleration q&&  

is replaced to )( cFFW + by the governing equation of 

Newtonian physics maf = . 
 

0)( =++= cFFJWqJC &&&&  
 

CF can be calculated by λTJ  where components ofλ  

are, Lagrange Multipliers, a vector of C dimension. Re-
arrange of equation gives    
 

CkCkJWQqJJWJ ds
T &&& −−−−=λ  

 
CkCk ds
&−− term is added to reduce the numerical error 

where sk  is spring constant and dk  is damping constant 
[2]. From above equation all other values are known 
instead of λ , so Lagrange multiplier is computed by 
solving the linear system and then multiplied with 
Jacobian matrix to obtain, λT

C JF = , constraint forces. 

J and J& are the partial derivative of node position and 
they can be calculated using following matrix: 
 
















=

MOMMM

L

L

00
00

DC
BA

J  

 
Node-arbitrary node constraints example in Fig. 1 used 
following vectors to create matrix J , where iii zyx ,, are 
current position of constrained nodes and zyx CCC ,, are 

fixed position of node. 
 

[ ])(2)(2)(2 000 zyx CzCyCxA −−−=     

[ ])(2)(2)(2 000 zyx CzCyCxB −−−−−−=

[ ])(2)(2)(2 111 zyx CzCyCxC −−−=  
    [ ])(2)(2)(2 111 zyz CzCyCxD −−−−−−=  

 



The size of J  matrix is number of constraints by 3 times 
of number of nodes. J& can be calculated same as above 
with current velocity instead of current position. 

Obtained constraint forces added into force 
computation routine to integrate into the FEM simulation. 
Then explicit ordinary differential equation predicts next 
position of each node. 

 
 
6. Experiments 
 

We created a fine triangulated surface mesh for the 
desired object. Using NETGEN [3] we generated a 3D 
tetrahedral mesh, which is given as input to our simulator. 
In the figure below, we demonstrate the bouncing of a 
stiff but still deformable metal ball against a soft board – 
an example of the deformation under constrained 
conditions. The four corners of the board are constrained 
through the four rods. The four arrows indicate direction 
and magnitude of constraint forces to keep the restricted 
distance against the downward forces which is generated 
by falling ball. The magnitudes of four contact forces are 
different since the metal ball is not dropped exactly 
middle of board. Due to flexibility of board the direction 
of constraint forces can be upward as well. This 
arrangement maintains constant distance of the four rods 
from the wires, as it is deformed by the fall of the ball by 
gravity. 
 

 
Fig. 2 Ball & board with four corner constraints  

 
Fig. 3 shows the deformation of the wheel without any 

geometric constraints on the left wheel and on the right, is 
the one with geometric constraints. The geometry has 
been maintained at the contact surface of the wheel with 
the rim on the constrained model while on the 
unconstrained one, the geometry could not be preserved 
when subjected to a constant force. The right tire shows 
that the inner geometry is maintained the same even after 
the deformation while the top and bottom parts of the 
wheel show little deformation. Thus the whole wheel unit 
shrinks, maintaining the geometric constraints and also 

obeying Newton’s laws. The simulator can also be used 
to simultaneously display two simulations of the same 
object with different geometric constraints on each one. 
 

 
Fig. 3 Unconstrained and constrained wheels  

 
In this study, distance constraints are applied to 

simulate reasonable behavior of deformable object and 
these constraints maintain the almost same distance 
during simulation. To prove the efficiency of constraints 
forces, Fig. 4 shows a graph for a sample simulation with 
two deformable tires. We applied 135 constraints to 
represent stiff metal rims and the error is computed by 
summing up the difference between original distance and 
current distance for each constraint at each time step. As 
shown in the bottom of the graph, accumulated error was 
kept under 2.5E-0.5 after a brief increase from 5.0E-6. 
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Fig. 4 Graph of total error between constrained node pairs 

 
 
7. Conclusion 
 

In this paper, it has been demonstrated how geometric 
constraints can be applied in the deformation of 
physically based modeling and simulation in an intuitive 
and effective manner. With the simulator, it has also been 



shown how easily users can experiment various 
simulation situations and modifying geometric constraints 
without modification of the whole simulator code.  

This has been achieved by the use of nonlinear FEM to 
represent the deformable object; wherein the simulator 
converts the user-defined geometric constraints into the 
constraint forces. The geometric constraints have been 
shown to maintain tight error bound conditions while 
preserving the desired shape of the deformable objects. 
Our current simulator can handle constraints represented 
by polynomial equations but robust collision and contact 
technique is desirable for dynamic simulation of 
deformable objects. 
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