
Intuitive Control of Deformable Object Simulation
using Geometric Constraints

Min Hong1 Min-Hyung Choi2 Ravi Yelluripati2

 Min.Hong@UCHSC.edu minchoi@acm.org yrk@acm.org

1 Bioinformatics, University of Colorado Health Sciences Center,
4200 E. 9th avenue Campus Box C-245, Denver, CO 80262, USA

2 Dept. of Computer Science and Engineering, University of Colorado at Denver,

Campus Box 109, PO Box 173364, Denver, CO 80217, USA

Abstract

This paper describes an effective and intuitive method
to control deformable objects using geometric
constraints. To achieve a natural and plausible
interaction with deformable objects and to setup the
desirable initial conditions of simulation, users should be
able to define and control the geometric constraints
intuitively. Users should be able to utilize the simulation
as a problem solving platform by experimenting various
simulation situations without major modification of the
simulator.

The proposed constraint-based simulation system
solves the problem using a non-linear FEM approach to
represent deformable objects and constraint forces are
generated by defining geometric constraints on the nodes
of the object to apply the restriction. It allows users to
define and modify geometric constraints and an
algorithm converts these geometric constraints into
constraint forces which seamlessly integrate
controllability to the simulation system. Simulator can
handle linear, angular, inequality based geometric
constraints on the objects. Our experimental results show
that constraints are maintained in the tight error bound
and preserve desired shape of deformable object during
the entire simulation.

1. Introduction

Due to the increasing demand of visual realism in
computer animation and medical visualization, simulation
of deformable model is becoming a major issue. To
accomplish sophisticated visual realism, the physically
based representation of object deformation is essential. In
addition, intuitive control of deformation becomes an
even more important issue, since deformable objects,
unlike rigid objects, change their formation continuously

and defining and enforcing geometric constraints are not
trivial. Especially, modeling the deformation system of
human organs for surgical simulation is extremely
complex. For instance, human articulations consist of
different layers of tissues, bones, ligaments, and tendons.
In addition, organs are surrounded by other organs and
the physical properties of these human organs and tissues
are not well-known. Under this situation, the intuitive
geometric constraints can be a good role to control soft
objects for surgical simulation.

Modeling and simulation of deformation under
external forces have been well-studied using various
techniques such as Mass-spring Model, FEM (Finite
Element Method), and BEM (Boundary Element
Method). However, to be practically used in various
simulation environments, ability to instinctively define
and enforce geometric controls with physical accuracy is
very important. The penalty method which has been
applied to solve the inter-penetration between two
colliding elastic bodies uses extra energy terms to force
the constraints, but it is not accurate and can be a delicate
situation to find proper penalty coefficients [11]. Further
penalty method needs tiny time steps to create visually
satisfactory animations [12]. This involves significant
computations which makes it difficult for real time
simulation. In our simulator, geometric constraints are
formulated and enforced to maintain the restrictions
between nodes. The constraints are seamlessly integrated
into the FEM based deformation model.

The rest of this paper is organized as follows: We
provide comprehensive related work on geometric
constraints and some different modeling approach of soft
objects in section 2. The brief overview of nonlinear FEM
model is elaborated in section 3. Section 4 describes that
the computations involved in defining geometric
constraints and some types of constraints are discussed.
We demonstrate the solution method how to apply and
build node-node constraints in section 5. In section 6, we
provide our experimental result with two examples.

2. Related Work

Geometric constraints related works have been well
studied in mechanical engineering [13] but the standpoint
of geometric constraint is different with computer graphic
applications. Our objective is to achieve a reasonable
visual appearance and accuracy in deformable object
simulation and previous researches for controlling the
objects using constraints are mainly investigated in rigid
objects or free form deformations. The early effort which
used hard springs to adjust the constraints gives similar
effects as constraint forces, but it may generate stiff
numerical conditions. The drawbacks of stiff condition
are that the simulator should use small time steps for
integration, which will result in unnecessary or excessive
computation. Hence it cannot be applied to real-time
interactive simulation. Lagrange multipliers method is
widely used in rigid body dynamic simulation presented
by Witkin et al [6] and Baraff [7]. Baraff introduced
Lagrange Multipliers to avoid intractable problem of
parameterizing a system’s degrees of freedom [2]. Witkin
[1] introduced a fast method to generate physically based
animation with geometric and dynamic constraints.

In modeling of deformable objects view, soft object
simulation has a long history from free form deformation
to FEM. However, the focus of existing research was on
the deformation modeling under given external forces.
Intuitive control of the behavior of model during
simulation has not been addressed to setup and create
scenario of a simulation.

FEM approach is used most often to produce
deformation in animation and simulation. Terzopoulos et
al. [4] introduced deformable elastic models to apply the
principles of elasticity. Bro-Nielsen [5] has investigated
modeling of the deformable human organs with FEM into
surgical simulation. For more fast interactivity, Cotin et
al. [8] investigated their effort to speed up FEM
computation using hybrid method. They combined pre-
computation technique and tensor-mass method into
surgical simulation and training to obtain real-time
volumetric deformations and cutting operations. Unlike
FEM, BEM only discretizes the boundary surface so this
method is not very accurate. But this algorithm requires
less computation time and more suitable for real-time
interactive simulation [9].

3. FEM Model

Simulating deformation is finding the displacement of
every node per time step under Newtonian physics law.
Mass-spring Model can be one way of modeling because
it is a simple physical model, easy to program, and it

demonstrates reasonably fast simulation speed. However,
it is difficult to find proper spring coefficients and deal
incompressibility of objects, so it may not address
reasonable accuracy of deformation.

 FEM is a well-known numerical continuum approach
to compute the displacement of every node in elasticity
analysis. The deformable object is discretized into a
suitable number of finite elements. Analysis of
deformable object deals with the computation of its
internal and external forces and displacements of every
node, which are initially unknown. These unknown
variables can be obtained by solving a set of basic
equations which govern the behavior of the object.
Unfortunately linear FEM is not accurate for large
deformations, but soft deformable objects usually can
have large deformations. The linear FEM which does not
allow reasonably accurate global behavior but it is
another way of elasticity modeling [10]. Thus globally
admissible nonlinear FEM is used in our simulator with
explicit time integration for fast computation. In nonlinear
FEM, the internal forces and deformations are measured
by the strain which is nonlinear in displacement and
velocity and the stress which is nonlinear in strain. The
strain is measured using the right Cauchy-Green
deformation tensor, FFC T= , which is invariant under
rigid transformation. Using the linear formulation in
FEM, the system equation is given as [10]

fKuuDuM =++ &&&

where the mass matrix M , the damping matrix D and
the stiffness matrix K are constant. u is an N-
dimensional vector of the discrete displacement field. f
is the traction force vector. The above equation for
nonlinear approaches takes the form

() 0=++ uRuDuM &&&

where ()uR is the internal force vectors due to
deformation. Soft objects have small stiffness coefficients
in all directions due to soft nature which will make
explicit time integration schemes an appropriate choice
and use of large time steps is viable [12]. Further the
Mass matrix M and Damping Matrix D are
approximated by diagonal matrices to reduce
computational overheads. Thus non-linear system of
equations with approximated Mass and Damping
matrices, and the use of appropriate time steps enables
real time simulation of fairly large meshes.

4. Geometric Constraints

Constraints have to conserve the geometric
characteristics such as distance between the nodes, angle
between the adjacent surface elements, during simulation.
For every simulation, there is a scenario that describes the
initial conditions, constant external forces and relations
that must be kept throughout the simulation. Users should
be able to define and modify the relation of objects to
adjust the conditions. These conditions can be described
in polynomial equations 0)(=qC where q stands for a
vector that uniquely defines the status of the entire
simulation system. Typical constraints include fixed
distance, and angles between nodes or a set of nodes.
Geometric constraints are applied to pairs of nodes of the
tetrahedral mesh and it is desired that the node pairs
maintain their relative positions and do not get affected
when external forces are applied on the deformable
object, as a whole. For example, the nodes at the point of
contact of the wheels inner surface and the outer surface
of a metallic rim always remain in contact, even when the
external forces are applied on the top and bottom of
wheel, as shown in Fig 1. In order to define such spoke-
like constraints, pairs of nodes with center as one
arbitrary node and one node on the wheel are taken each
time and a node-arbitrary node constraint is defined.
Note that the node at the center of the wheel, even though
is not part of the object can also be included as a
constraint node, which we call as arbitrary node. Also one
node can be applied as a constraint node with several
other nodes. This enables ease of defining constraints to
real world objects, which is often the case.

Fig. 1 Defining Geometric Constraints

The simulator can basically be applied to a variety

objects and derived results depend on how the geometric
constraints have been effectively applied. Based on how
the constrained nodes are applied it is possible to
introduce a skewed result of simulation. To avoid
unreasonable or unnatural simulation, the user should

study the constraints on various node pair operations by
hit and trial and verify the output (the simulation).

 Any relative condition between nodes, as long as it
can be represented in algebraic equation and its partial
derivatives exist, geometric constraints can be formulated
and enforced in the simulator. The following constraint
equations have been integrated to simulator.

• Node-node constraints
Node-node constraints preserve the distance between
two nodes on the object.

022
=−− Rqq ji

here iq and jq are the node positions and ji qq ≠ . R is

the desired distance between two nodes should be
maintained during simulation.

• Node-arbitrary point constraints
Node-arbitrary constraints maintain the distance
between a node on the object and a point which is a
desirable position to fix on the outside of object.

022 =−− Rqq ci

where cq is arbitrary position which we want to fix
specific node to some place.

• Angular constraints
Angular constraints restrict the angle between three
nodes.

022
=−• θVU

rr

U
r

is a vector of node position between iq and kq , V
r

is

a vector of node position between jq and kq , and θ is

the desirable angle to maintain.
 iq

 kq jq

V
r

• Parallel constraints
Parallel constraints restrict two vectors in the parallel
during the entire simulation.

1
2
=•VU

rr

hereU
r

is a vector of node position between iq and jq ,

V
r

is a vector of node position between kq and lq .

θ

U
r

• Inequality constraints
Inequality constraints set up the restriction for the node
positions to be within a radius. Since Linear Solver
system cannot solve inequalities, a variable W is added
so that it becomes an equality problem, which is
solvable.

0222
=−−− WRqq ji

All nodes which are constrained should satisfy the above
equations.

5. Solution Method

Once the geometric constraints are defined, the
constraints forces are computed to maintain the given
constraints. The geometric constraints are represented
with a set of equations. For example, suppose that the
simulation requires restriction between two nodes (node-
node constraint). When 111 ,, zyx is position of one node

and 222 ,, zyx is position of the other node, the distance
r between two nodes should be continuously maintained
during the simulation. This node-node constraint can be
defined by following equation:

0)()()(22

21
2

21
2

21 =−−+−+−= rzzyyxxC

 If n is total number of nodes in the object, n3 vector
q represents a state vector of each node position and
W is nn 33 × inversed mass of node matrix which is
diagonal elements contains the node’s masses, and F is

n3 global force vector. Suppose the simulation starts
with position and velocity of nodes in legal
state, 0== CC & , then C&& has to minimize close to
0 with additional constraint force CF . From given

constraint function C , C& can be computed by taking

derivatives. The derivatives of C is 0=
∂
∂

= q
q
CC && and

we can denote
q
C
∂
∂

by J . J is Jacobian matrix of

C which includes connectivity information of constraints.
The time derivative of the Jacobian matrix

gives 0
2

=
∂
∂

+
∂∂

∂
= q

q
Cq

tq
CC &&&&& and we can denote

tq
C
∂∂

∂2

by J& as well. Thus second derivative of constraint

function can be

0=+= qJqJC &&&&&&

To solve unknown constraint forces cF , cF added with

previous global force vector F and then acceleration q&&

is replaced to)(cFFW + by the governing equation of

Newtonian physics maf = .

0)(=++= cFFJWqJC &&&&

CF can be calculated by λTJ where components ofλ

are, Lagrange Multipliers, a vector of C dimension. Re-
arrange of equation gives

CkCkJWQqJJWJ ds
T &&& −−−−=λ

CkCk ds
&−− term is added to reduce the numerical error

where sk is spring constant and dk is damping constant
[2]. From above equation all other values are known
instead of λ , so Lagrange multiplier is computed by
solving the linear system and then multiplied with
Jacobian matrix to obtain, λT

C JF = , constraint forces.

J and J& are the partial derivative of node position and
they can be calculated using following matrix:
















=

MOMMM

L

L

00
00

DC
BA

J

Node-arbitrary node constraints example in Fig. 1 used
following vectors to create matrix J , where iii zyx ,, are
current position of constrained nodes and zyx CCC ,, are

fixed position of node.

[])(2)(2)(2 000 zyx CzCyCxA −−−=

[])(2)(2)(2 000 zyx CzCyCxB −−−−−−=

[])(2)(2)(2 111 zyx CzCyCxC −−−=
 [])(2)(2)(2 111 zyz CzCyCxD −−−−−−=

The size of J matrix is number of constraints by 3 times
of number of nodes. J& can be calculated same as above
with current velocity instead of current position.

Obtained constraint forces added into force
computation routine to integrate into the FEM simulation.
Then explicit ordinary differential equation predicts next
position of each node.

6. Experiments

We created a fine triangulated surface mesh for the
desired object. Using NETGEN [3] we generated a 3D
tetrahedral mesh, which is given as input to our simulator.
In the figure below, we demonstrate the bouncing of a
stiff but still deformable metal ball against a soft board –
an example of the deformation under constrained
conditions. The four corners of the board are constrained
through the four rods. The four arrows indicate direction
and magnitude of constraint forces to keep the restricted
distance against the downward forces which is generated
by falling ball. The magnitudes of four contact forces are
different since the metal ball is not dropped exactly
middle of board. Due to flexibility of board the direction
of constraint forces can be upward as well. This
arrangement maintains constant distance of the four rods
from the wires, as it is deformed by the fall of the ball by
gravity.

Fig. 2 Ball & board with four corner constraints

Fig. 3 shows the deformation of the wheel without any

geometric constraints on the left wheel and on the right, is
the one with geometric constraints. The geometry has
been maintained at the contact surface of the wheel with
the rim on the constrained model while on the
unconstrained one, the geometry could not be preserved
when subjected to a constant force. The right tire shows
that the inner geometry is maintained the same even after
the deformation while the top and bottom parts of the
wheel show little deformation. Thus the whole wheel unit
shrinks, maintaining the geometric constraints and also

obeying Newton’s laws. The simulator can also be used
to simultaneously display two simulations of the same
object with different geometric constraints on each one.

Fig. 3 Unconstrained and constrained wheels

In this study, distance constraints are applied to

simulate reasonable behavior of deformable object and
these constraints maintain the almost same distance
during simulation. To prove the efficiency of constraints
forces, Fig. 4 shows a graph for a sample simulation with
two deformable tires. We applied 135 constraints to
represent stiff metal rims and the error is computed by
summing up the difference between original distance and
current distance for each constraint at each time step. As
shown in the bottom of the graph, accumulated error was
kept under 2.5E-0.5 after a brief increase from 5.0E-6.

Total Constraint Error

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

0.
01

0

0.
28

0

0.
55

0

1.
22

0

1.
49

0

2.
16

0

2.
43

0

2.
20

2

2.
52

0

2.
83

8

3.
15

6

3.
47

4

3.
79

3

4.
11

1

4.
42

9

4.
74

7

5.
06

5

5.
38

3

5.
70

1

6.
02

0

6.
33

8

Time

Er
ro

r

Fig. 4 Graph of total error between constrained node pairs

7. Conclusion

In this paper, it has been demonstrated how geometric
constraints can be applied in the deformation of
physically based modeling and simulation in an intuitive
and effective manner. With the simulator, it has also been

shown how easily users can experiment various
simulation situations and modifying geometric constraints
without modification of the whole simulator code.

This has been achieved by the use of nonlinear FEM to
represent the deformable object; wherein the simulator
converts the user-defined geometric constraints into the
constraint forces. The geometric constraints have been
shown to maintain tight error bound conditions while
preserving the desired shape of the deformable objects.
Our current simulator can handle constraints represented
by polynomial equations but robust collision and contact
technique is desirable for dynamic simulation of
deformable objects.

8. Acknowledgments

This research was partly supported by CASI (Colorado
Advanced Software Institute G-0183-7 TTG02-07) and
we would like to thank Chris Lee for helpful advice and
coding.

9. References

[1] Andrew Witkin, William Welch, Fast Animation and
Control of Nonrigid Structures, ACM SIGGRAPH 1990
Conference Proceedings, 24, 4, 243-252, 1990
[2] David Baraff, Linear-Time Dynamics using Lagrange
Multipliers, Computer Graphics, 30, 137--146, 1996
[3] NETGEN is an automatic 3d tetrahedral mesh
generator.http://www.sfb013.unilinz.ac.at/~joachim/netge
n/
[4] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer,
Elastically deformable models. ACM SIGGRAPH 1987
Conference Proceedings, 21(4):205–214, 1987.
[5] Morten Bro-Nielsen, Finite Element Modeling in
Surgery Simulation. Journal of the IEEE, 86(3) : 490 -
503, 1998
[6] D. Baraff. Issues in computing contact forces for non-
penetrating rigid bodies. Algorithmica, 10:292–352, 1993
[7] A. Witkin, M. Gleicher, and W. Welch, Interactive
dynamics. In Proceedings 1990 Symposium on
Interactive 3d Graphics, 24, 11–21, March 1990.
[8] Stephane Cotin, Herve Delingette, and Nicholas
Ayache, A hybrid elastic model for real-time cutting,
deformations, and force feedback for surgery training and
simulation, The Visual Computer, 16, 7, 437-452, 2000
[9] Doug L. James and Dinesh K. Pai, ArtDefo - Accurate
Real Time Deformable Objects, ACM SIGGRAPH 1999
Conference Proceedings, 65-72, 1999
[10] Xunlei Wu, Michael S. Downes, Tolga Goktekin,
and Frank Tendick. Adaptive Nonlinear Finite Elements

for Deformable Body Simulation Using Dynamic
Progressive Meshes. EUROGRAPHICS 2001
[11] Gentaro Hirota, Susan Fisher, Andrei State, Henry
Fuchs and Chris Lee. An Implicit Finite Element Method
for Elastic Solids in Contact. Proceeding of Computer
Animation 2001
[12] Y. Zhuang and J. F. Canny, Real-Time Simulation of
Physically Realistic Global Deformations. IEEE
Visualization Late Breaking Hot Topics Proc., October
1999.
[13] Herbert Goldstein, Classical Mechanics, Wesley,
Reading, MA

