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Abstract. Geometric constraints are imperative components of many dynamic 
simulation systems to effectively control the behavior of simulated objects. In 
this paper we present an improved first-order implicit constraint enforcement 
scheme to achieve improved accuracy without significant computational bur-
den. Our improved implicit constraint enforcement technique is seamlessly in-
tegrated into a dynamic simulation system to achieve desirable motions during 
the simulation using constraint forces and doesn�t require parameter tweaking 
for numerical stabilization. Our experimental results show improved accuracy 
in maintaining constraints in comparison with our previous first-order implicit 
constraint method and the notable explicit Baumgarte method. The improved 
accuracy in constraint enforcement contributes to the effective and intuitive 
motion control in dynamic simulations. To demonstrate the wide applicability, 
the proposed constraint scheme is successfully applied to the prevention of ex-
cessive elongation of cloth springs, the realistic motion of cloth under arduous 
collision conditions, and the modeling of a joint for a rigid body robot arm.   

1   Introduction 

One of the primary goals of a dynamic simulation is to create physically realistic 
motions and the intuitive control of a dynamic simulation plays a key role in accom-
plishing the intended realism. Maintaining geometric constraints with utmost accu-
racy can be an effective tool to control the behavior of simulated objects in many 
applications including physically based simulation, character animation, and robotics. 
Recently we have established the first-order implicit constraint enforcement to effec-
tively enforce geometric constraints [2]. This paper presents the improved first-order 
implicit constraint enforcement that extends our previous work to efficiently and 
robustly administrate the motion of objects. The enhanced accuracy in constraint 
enforcement enables us to improve the motion control in many applications.  

Hard springs and penalty forces [13, 14] are often used as an alternative to geomet-
ric constraints but they may create a stiff numerical system and consequently the 
simulator may have to use a small integration time step to avoid numerical instability. 
Furthermore, the accuracy of the intended behavior control is not warranted since the 
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choice of coefficients can greatly alter the associated object behavior. Constrained 
dynamics using Lagrange Multipliers are well studied and widely used to enforce 
geometric constraints. Baumgarte constraint stabilization technique has been success-
fully used for many applications [3, 4, 7, 8, 9, 15] to reduce the constraint errors and 
stabilize the constrained dynamic system. Barzel and Barr [8] introduced dynamic 
constraints to control behaviors of rigid bodies using geometric constraints. Platt and 
Barr [9] presented reaction constraints and augmented Lagrangian constraints to 
flexible models. Witkin and Welch [7] applied the explicit Baumgarte method into 
non-rigid objects to connect them and control the trajectory of motion. Baraff [4] 
used linear time Lagrange multiplier method to solve constraint system. Ascher and 
Chin [11] explicated the inherent drawbacks of Baumgarte stabilization method and 
introduced constraint stabilization techniques. Cline and Pai [6] introduced post-
stabilization approach for rigid body simulation which uses stabilization step to com-
pensate the error of integration for each time step. However, it requires additional 
computational load to reinstate the accuracy and it may cause the loss of natural 
physical motions of object under complicated situations since the constraint drift 
reduction is performed independently from the conforming dynamic motions.  

The rest of this paper is organized as follows: the brief overview of constraint en-
forcement is elaborated in section 2. Section 3 elucidates a description of improved 
first-order implicit constraint enforcement scheme. In section 4 we provide the expla-
nation for our simulated examples and experimental results of our method.     

2   Constraint Enforcement 

Two main concerns of constraint enforcement to create tractable and plausible mo-
tions are physical realism and the controllability of simulation. Our primary contribu-
tion of this paper is the enhanced accuracy in constraint enforcement using the im-
proved first-order implicit constraint management scheme which can be applied to 
any dynamic simulations � character animation, cloth simulation, rigid body simula-
tion, and so on. Without proper control terms or constraints, the dynamic simulations 
may generate abnormal or undesirable motions. Under this circumstance, it is consid-
ered that an accurate and robust constraint management plays an important role in 
controlling the motion of dynamic simulations. This paper describes a method to 
achieve exact desired behaviors without any discordant motions of object by employ-
ing accurate and effective geometric constraints. 

To achieve certain behaviors in a physically-based simulation, the desirable geo-
metric restrictions should be intuitively reflected into the dynamic system. Most con-
straint-based dynamic systems [1, 4, 6, 7, 8] convert geometric restrictions into con-
straint forces to maintain the restrictions and they are blended with other external 
forces. Any relations or restrictions which can be represented as algebraic equations 
can be applied as constraints in the dynamic simulation system. For instance, anima-
tors can enforce various types of constraints to intuitively control desirable initial 
environments or modify the motions of objects during simulation: distance con-
straints (node-node or node-arbitrary point), angle constraints, parallel constraints, 
and inequality constraints [1].  

The explicit Baumgarte method [3, 4, 7, 8] uses a classic second order system, 
similar to a spring and damper, to enforce and stabilize the constraints. This method 
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helps in enforcing constraints within the framework of Lagrange multipliers method, 
but it requires ad-hoc constant values to effectively stabilize the system. Finding 
proper problem specific coefficients is not always easy. In order to overcome this 
problem, we proposed the implicit constraint enforcement approach [2]. It provides 
stable and effective constraint management with same asymptotic computational cost 
of explicit Baumgarte method. Moreover, the explicit Baumgarte method is condi-
tionally stable while the implicit method is always stable independent from the step 
size. This paper is extension of our previous work to improve the accuracy of con-
straint enforcement. The computational solution is detailed in the implicit constraint 
using improved first-order scheme section.    

3   Implicit Constraint Using Improved First-Order Scheme 
One of the most popular methods for integrating a geometric constraint into a dy-
namic system is to use Lagrange multipliers and constraint forces. The constraint-
based formulation using Lagrange multipliers results in a mixed system of ordinary 
differential equations and algebraic expressions. We write this system of equations 
using 3n generalized coordinates, q, where n is the number of discrete masses, and 
the generalized coordinates are simply the Cartesian coordinates of the discrete 
masses.  

[ ]Tnnn zyxzyxzyxq !222111=  

Let )),(( ttqΦ be the constraint vector made up of m components each representing 
an algebraic constraint. The constraint vector is represented mathematically as 

( ) ( ) ( ) ( )[ ]ttqttqttqttq m ),(),(),(),( 21 ΦΦΦ=Φ !  

where the iΦ are the individual scalar algebraic constraint equations. We write the 
system of equations  

AT
q FqM =Φ+ λ""  (1) 

( ) 0),( =Φ ttq
  

where AF are applied, gravitational and spring forces acting on the discrete masses, M 
is a 3nx3n diagonal matrix containing discrete nodal masses, λ is a mx1 vector con-
taining the Lagrange multipliers and qΦ is the mx3n Jacobian matrix, and subscript q 

indicates partial differentiation with respect to q.  
We previously proposed an implicit first-order constraint enforcement scheme to 

effectively control cloth behavior [2]. That implicit method was first order and was 
implemented the following way. The equation of motion (equation (1)) along with the 
kinematics relationship between q and q" are discretized as 

( ) ( )ttqFtMttqtMtqttq AT
q ),(),()()( 11 −− ∆+Φ∆−=∆+ λ""  (2) 

)()()( ttqttqttq ∆+∆+=∆+ "
 (3) 

The constraint equations written at new time thus they are treated implicitly  

( ) 0),( =∆+∆+Φ ttttq  (4) 
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Equation (4) is now approximated using a truncated, first-order Taylor series  

( ) ( )( ) ( ) 0),()()(),(),( =∆Φ+−∆+Φ+Φ tttqtqttqttqttq tq  

Note that the subscripts q and t indicate partial differentiation with respect to q and t, 
respectively. Eliminating )( ttq ∆+  results in the following linear system with λ the 
remaining unknown. 
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Note that the coefficient matrix for this implicit method is the same as the coefficient 
matrix for the Baumgarte method. This system is solved for the Lagrange multipliers 
then equations (2) and (3) are used to update the generalized coordinates and veloci-
ties. 

In what follows we describe a scheme that while formally first-order, contains a 
correction that improves the accuracy of the scheme without significant computa-
tional cost. This scheme may be described as using a second order mid-point rule for 
the momentum equation while solving the constraint equations implicitly using a first 
order linearization. The first step calculates all variables including the Lagrange mul-
tiplier at the half-time step.  
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Again note that the subscript t indicates partial differentiation with respect to t. 
)2/( ttq ∆+ and )2/( ttq ∆+" are eliminated from equations (5) through (7) resulting 

in the linear system that must be solved to obtain the half-step Lagrange multipliers: 
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Equations (5) and (6) are then used to obtain )2/( ttq ∆+ and )2/( ttq ∆+" . The sec-
ond step uses the half-step Lagrange multiplier and evaluates the Jacobian using 

)2/( ttq ∆+ to form the mid-point step: 
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This scheme is formally first order as the linearized constraint equation (equation (7)) 
is solved only to first order. Despite this theoretical first order accuracy the scheme 
exhibits improved accuracy while requiring solution of the same linear system as the 
first order scheme described above. 

To integrate non-constrained portion of system, the second-order explicit Adams-
Bashforth method [10] is used to predict the next time status of the system. The ex-
plicit Adams-Bashforth method for solving differential equations is second order and 
provides better stability than first-order explicit Euler method. The second-order 
Adams-Bashforth method has the general form: 

( )),(),(3
2
1

111 −−+ −+= iiiiii xfxfh ηηηη  

This equation is integrated into ODE (Ordinary Differential Equation) system as a 
force computation to calculate next status of velocity and then we can estimate the 
next status of position.  

( )( )tttqFttqFtMtqttq AA ),()),((3)()( 1 ∆−−∆+=∆+ −""
 

)()()( ttqttqttq ∆+∆+=∆+ "  

4   Applications and Experimental Results 

One good example of the constraint enforcement for controlling motion is �super-
elastic� effect [5] in cloth simulation. Most clothes have their own properties for 
elongation. Stiff springs can be a candidate solution for this problem, but there still 
exists numerical instability for linear or non-linear springs when we apply a large 
integration time step. Provot [5] applied the distance reduction using dynamic inverse 
constraints for over-elongated springs. However, this approach ignores physical con-
sequences of moving nodes instantly and it may cause loss of energy or original dy-
namic behavior of motions. In addition, the ordering of node displacement is critical 
when the internal meshing structures are complex and collision is involved. To pre-
vent excessive elongation of cloth, our approach replaces the springs with implicit 
constraints when the elongations of springs are over a certain threshold. In our 
method, adaptive constraint activation and deactivation techniques are applied to 
reduce computational burden of solving a larger linear system. For instance, only 
when springs are over elongated, these springs are replaced with implicit constraints. 
When the constraint force is working to resist the shrinkage, our system deactivates 
these constraints into springs.  

We applied our new technique to a cloth simulation to prevent over-elongation of 
cloth springs. A piece of cloth is initially in a horizontal position and falling down 
due to gravity. A relatively heavy ball is moving toward the middle of the falling 
cloth. Figure 1 illustrates the different motion of cloth without (a) and with (b) con-
straint enforcement. In figure 1 (a), some springs are excessively stretched and they 
cause unstable motion of cloth simulation. However, figure 1 (b) shows plausible and 
stable motion of cloth using implicit constraint enforcement. Although a moving ball 
hits the middle portion of falling cloth which abruptly creates severe collision forces 
to specific parts of cloth, an animation [12] using implicit constraint enforcement 
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shows realistic behavior of the cloth and an animation in figure 1 (a) using only 
springs includes unstable and odd motions of cloth. 

To test the accuracy of the constraint enforcement and measure the total amount of 
constraint drift during simulation, we have tested our improved first-order implicit 
constraint enforcement system with a robotic link connected with revolute joints. 
Figure 2 shows 5-link robot arm falling down under gravity. Initially the robot links 
are in horizontal position and one end of it is fixed. We recorded the constraint error 
over each time step which is obtained by accumulated absolute value of difference 
between each original link distance and current link distance.  

 

Fig. 2. A simulation of a freely falling 5-link robot arm under gravity. Each Link is constrained 
using improved implicit constraint enforcement and a red sphere illustrates fixed point-node 
constraint to hang the robot links. 

Figure 3 shows an accumulated experimental constraint error data from the simula-
tion of a falling 5-link robot arm shown in figure 2. We compared implicit constraint 

  
 (a) Without constraint enforcement (b) With constraint enforcement 

Fig. 1. Mesh view of simulated motion of a cloth patch on the collision between a moving ball 
and the freely falling cloth under gravity. The cloth is hung by two fixed point-node constraints 
and the implicit constraint enforcement is used to prevent the excessive elongation of cloth 
springs. 
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enforcement using first-order scheme and the improved first-order scheme and tested 
these systems using two different categories: integration time step size (0.01 and 0.1 
seconds) and mass (1 and 50 unit). Although the accumulated constraint error grows 
for bigger masses and bigger integration time step sizes, the implicit constraint en-
forcement using the improved first-order scheme bestows approximately two times 
higher accuracy. In figure 4, we measure the accumulated constraint error under same 
condition of figure 2 using explicit Baumgarte method. This graph shows that the 
implicit constraint enforcement reduces constraint errors effecting comparison with 
the overall errors of Baumgarte stabilization. The choice of alpha and beta feedback 
terms has a dominant effect on how well this Baumgarte constraint enforcement per-
forms. 
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Fig. 3. Accumulated error of implicit constraint enforcement using improved first-order 
scheme and first-order scheme. Different masses and integration time steps are applied to these 
systems for comparison. 
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Fig. 4. Accumulated constraint error comparison for explicit and implicit constraint enforce-
ment. 
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5   Conclusion 

This paper describes a new improved first-order implicit constraint enforcement 
scheme that enhances the accuracy in constraint enforcement. It doesn�t require any 
ad-hoc constants to stabilize the system. While the additional computation cost is 
relatively minimal, the accuracy of the constraint enforcement is significantly en-
hanced. This technique can be used to control any dynamic simulation environment 
using various types of geometric constraints such as angle or distance restrictions. 
This paper shows how well the control of the over elongation problem of cloth is 
handled using the implicit constraint enforcement. Adaptive constraint activation and 
deactivation approach also reduces the computational expense of the numerical sys-
tem. This paper focuses on the constraint enforcement and minimizing constraint drift 
with an assumption that a desirable behavior can be represented in geometric con-
straints. In the future, more studies in formulating a set of proper constraints from 
intended behaviors of objects and minimizing the total number of active constraints 
are needed. 
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