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Abstract 
 

The geometric constraint enforcement using 
Lagrange Multipliers is one of the popular methods to 
control the behavior and trajectories of dynamically 
simulated entities. Therefore, effective and efficient 
enforcement and proper integration of the geometric 
constraints is the key to a successful constraint 
management. This paper describes the formulation and 
integration of geometric constraints in a dynamic 
simulation and provides a guideline to choose a proper 
constraint enforcement method. In addition, the 
numerical stability and convergence analysis of two 
explicit and implicit constraint enforcement techniques 
are reported with respect to the step sizes of 
differential equations. Experiments show that our new 
implicit constraint enforcement technique demonstrates 
a superior stability over large time steps and fast 
system response compared to the explicit Baumgarte 
method.  The implicit constraint enforcement method 
uses the future time step to estimate the correct 
magnitude of the constraint forces and doesn’t require 
problem dependent stabilization parameters as a 
second order state feedback term. 
 
1. Introduction 
 

Due to the well-defined structures and the ease of 
programming, forward dynamics systems are widely 
used to simulate the dynamics of both rigid and 
deformable bodies in computer graphics, robotics, 
medical visualization and interactive applications. 
Dynamic simulations are essential components of many 
modern computer graphics and visualization 
applications because it produces highly realistic 
animations. However, the direct and precise control of 
the behavior and trajectories of objects are difficult 
because it’s based on a passive simulation model where 

we set the initial conditions and external forces to 
compute the future motion. For example, a small 
adjustment of the input parameters can drastically 
affect the subsequent motion [10]. The inverse 
dynamics techniques could generate correct initial 
conditions from well-defined trajectories but usually 
they are very expensive to compute and sensitive to the 
numerical errors. Therefore, putting a proper set of 
geometric constraints over a dynamic system is widely 
used to control the behavior of dynamic system. By 
employing the geometric constraints as a control term, 
the overall scenario of a dynamic simulation can be 
designed in advance by defining the trajectories of a set 
of objects. The user interactions can also be interpreted 
as a control commands during a simulation, giving 
effective environments to direct and steer the 
simulation. In addition, geometric constraints have 
wide applications beyond the behavior control such as 
the formulation of robotic joints, joint limits, the 
definition of a valid variable scope, collision detection 
and contact resolution, etc. Despite this advantages, 
one of the main reasons that the geometric constraints 
are not used extensively is the error accumulation and 
numerical error drift over time when it’s used in 
conjunction with the dynamic system. Several methods 
have been suggested for the stabilization of differential 
algebraic equations [1, 4, 18, 19]. Such methods often 
include constraint differentiation and problem 
stabilization. Because of its simplicity, one of the 
popular methods is Baumgarte constraint stabilization 
[2, 22] that employs a second order stabilization term, 
but the proper choice of coefficients dictates the 
stability and convergence. A physical explication of 
this method is that we are adding additional correction 
forces, proportional to the error in the velocity and 
position constraints, to counteract drift. The main 
difficulty of using Baumgarte stabilization is that it is 
not always easy to find an appropriate value for the 
coefficients. 



Constraints have to conserve the geometric 
characteristics such as distance between the nodes, 
angle between the adjacent surface elements, during 
simulation. Constrained dynamics is concerned with 
making objects’ behavior consistent with the forces of 
constraint. In a simple mass-spring case, the main idea 
of constrained dynamics is that our dynamic 
description includes not only discrete masses and 
forces, but restrictions on the way the masses are 
permitted to move. For example, we might constrain a 
mass to move along a specified curve, or require two 
masses to remain a specified distance apart. The 
problem of constrained dynamics is to make the mass 
obey Newton’s laws, and at the same time obey the 
geometric constraints. 

This paper shows a comparison between implicit and 
explicit constraint and provide a guideline to choose an 
appropriate constraint enforcement method. Geometric 
constraint enforcement technique shows good stability 
over large time steps and quick convergence. It is 
particularly effective to enforce a hard constraint over a 
large time step. It also presents dynamic model in state 
space, which describe differential equations, and state 
feedback to relocate the eigenvalues of a given system. 
 
2. Background 
 

Some of the most natural and graceful motion in 
computer graphics has been achieved by simulating the 
physical behavior of objects. Dynamic simulation of 
physical systems has become an important approach to 
computer graphics and computer animation. The 
modeling of physical systems often leads to partial or 
directly to ordinary differential equations. The solution 
of these equations usually is a major part of the total 
computational costs for a simulation or animations. 
 
2.1 Dynamic Model in State Space 
 

The idea of state space comes from the state-variable 
method of describing differential equations. In this 
method the differential equations describing a dynamic 
system are organized as a set of first-order differential 
equations in the vector-valued state of the system [6], 
and the solution is visualized as a trajectory of this state 
vector in space. 

Use of Newton’s law typically leads to second-order 
differential equations, that is, equations that contain the 
second derivative. Differential equations can be 
described by a set of simultaneous first-order 
differential equations [3, 12]. For the convenience of 
the description, we use a simple mass-spring-damper 
model but the constraint enforcement technique 
presented here can be applied to any dynamic system 
with holonomic constraints. We write our system of 
equation using 3N generalized coordinates, q, where N 

is the number of discrete masses, and the generalized 
coordinates are simply the Cartesian coordinates of the 
discrete masses.  
 

T

1 1 1 2 2 2 N N N
q x y z x y z ... x y z= ⎡ ⎤⎣ ⎦          (1) 

 
The physical system equation of movement of discrete 
masses with external control force, u  called control 
reference, is 
 

ud s cMq K q K q K+ + =                   (2) 
 
The purpose of the control reference is to allow us to 
assign a set of pole locations for the closed-loop system 
that will correspond to satisfactory dynamic response 
in terms of rise time and other measures of transient 
response. Equation (2), the well known equation 
describing the damped oscillator [9], expresses 
Newton’s second law of motion for discrete masses. M 
is a 3N× 3N diagonal matrix containing discrete nodal 
masses, dK is a 3N × 3N matrix containing nodal 
damping coefficients, sK  is a 3N × 3N matrix 
containing nodal spring stiffness constants, and cK  is a 
3N× 1 positive gain constant vector. Let us define state 
variables 

T

Q q q= ⎡ ⎤⎣ ⎦ . Then we obtain 
 

u
0 I 0

1 1 1

s d c

Q Q
M K M K M K− − −

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

   (3) 

I 0P Q= ⎡ ⎤⎣ ⎦                             (4) 
 
Equation (3) is a state equation and equation (4) is an 
output equation for our system ( P is the position 
vector). Equation (3) and (4) are in the standard form: 
 

uQ AQ B= +                             (5) 
P CQ=                                   (6) 

 
The entries of Q  are called state variables. Q  is a 
6N× 1 state vector, A is a 6N× 6N system matrix, B is 
a 6N× 1 input vector, and C is a 1× 6N output vector. 
 
2.2 State Feedback 

 
If we were solving the differential equation exactly, 

this procedure would keep the particle exactly on the 
geometric constraint, provided we began with valid 
initial conditions. In practice, we know often the 
numerical solutions to ODE drifts. We must add an 
extra feedback term to prevent this numerical drift. The 
feedback force needs to be added in after the constraint 



force calculation, or else the constraint force will 
dutifully cancel it. 

One of the first applications of state space methods 
to linear systems was that of using feedback of the state 
variables to relocate the eigenvalues of a given system, 
which achieves better system response characteristics. 
The reason for adding feedback is to improve the 
system characteristics in some sense. Feedback control 
refers to an operation that, in the presence of 
disturbances, tends to reduce the difference between 
the output of a system and some reference input and 
that does so on the basis of this difference. Here only 
unpredictable disturbances are so specified, since 
predictable or known disturbances can always be 
compensated for within the system. 

We consider the 6N-dimensional single-variable 
state equation (5) and (6). The first step in the state-
space design method is to find the control reference as 
feedback of a linear combination of the state variables 
that is -u KQ= . This equation tells us that the system 
has a constant matrix in the state-vector feedback path. 
For an 6Nth-order system there will be 6N feedback 
gains and since there are 6N roots of the system, it is 
possible that there are enough degrees of freedom to 
select arbitrarily any desired root location by choosing 
the proper values of K.  

Substituting the feedback reference given by 
-u KQ=  into the system described by equation (5) 

yields 
 

( )Q AQ BKQ A BK Q= − = −                (7) 
 
We wish to modify the given system by the use of 
state-variable feedback so as to obtain a new system 
with specified eigenvalues [11]. The characteristic 
equation of this closed-loop system is 
 

( )det 0sI - -A BK⎡ ⎤ =⎣ ⎦                      (8) 
 
The control reference design then consists of picking 
the gain K so that the roots of equation (8) are in 
desirable locations. For now we assume that the desired 
locations are known, say , , ,1 2 ns = s s s . Then the 
corresponding desired characteristic equation is 
 

( ) ( )( ) ( ) = 0c 1 2 ns = s - s s - s s - sα              (9) 
 
Hence the required elements of K are obtained by 
matching coefficients in equation (8) and (9). This 
forces the system’s characteristic equation to be 
identical to the desired characteristic equation and the 
closed-loop poles to be placed at the desired locations. 

There are some advantages of feedback control. First, 
the system output can be made to follow or track the 

specified input function in an automatic fashion. 
Second, system performance is less sensitive to 
variations of parameter values. Third, system 
performance is less sensitive to unwanted disturbances. 
Fourth, use of feedback makes it easier to achieve the 
desired transient and steady-state response. The 
advantages of feedback are gained at the expense of 
certain disadvantages. First, the possibility of 
instability is introduced and stability becomes a major 
design concern. Actually, feedback can either stabilize 
or destabilize a system. Second, there is a loss of 
system gain, and additional stages of amplification may 
be required to compensate for this. Third, additional 
components of high precision are usually required to 
provide the feedback signals. 
 
3. Constrained Dynamics 
 

One of the most popular methods for integrating a 
geometric constraint into a dynamic system is to use 
Lagrange multipliers and constraint forces [13, 14, 20, 
21]. The constraint-based formulation using Lagrange 
multipliers results in a mixed system of ordinary 
differential equations and algebraic expressions. Let 

( q,t )Φ  be the constraint vector made up of m 
components each representing an algebraic constraint. 
The constraint vector is represented mathematically as 
 

( ) T1 2 mq ,t ( q,t ) ( q,t ) .... ( q,t )Φ Φ Φ Φ= ⎡ ⎤⎣ ⎦   (10) 
 
where the iΦ are the individual scalar algebraic 
constraint equations. The total force acting on the 
system is the sum of the external force and the 
constraint forces. We write the system of equations  
 

T A

q
Mq FΦ λ+ =                        (11) 

( ) 0q ,tΦ =                            (12) 
 
where AF are applied, gravitational and spring forces 
acting on the discrete masses, λ  is a M × 1 vector 
containing the Lagrange multipliers and qΦ is the 
M× 3N jacobian matrix. 
 
3.1 Explicit Constraint Enforcement 
 

Baumgarte [2, 7] described a technique in which the 
differentiated constraint equations are augmented with 
terms that are analogous to feedback applied to a 
classical second order system. Let me explain more in 
detail. Equation (12) is an implicit function for the 
constraint. If q is a legal position, then legal velocities 
and legal accelerations are all those that satisfy 
 



0Φ =    (legal velocity)                    (13) 

0Φ =    (legal acceleration)             (14) 
 
Let us define state variables 

T

Φ Φ⎡ ⎤Θ = ⎣ ⎦ . Then 

using the state feedback gain 2 2K β α⎡ ⎤⎣ ⎦=  as we 
describe section 2.2, we obtain 
 

2

0 1
2

d
dt

Φ Φ
Φ β α Φ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Θ = = ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
             (15) 

 
From equation (15), the constraint equation with state 
feedback can be written by 
 

22 0Φ αΦ β Φ+ + =                    (16) 
 
The parameters α  and β  determine the character of 
the transient as 0Φ → . Equation (16) may be 
expressed in a more convenient form by differentiating 
the constraint vector as follows 
 

( ) ( ) ( ) ( )d q,t q,t q,t dq
q,t

dt t q dt
Φ Φ Φ

Φ
∂ ∂

= = +
∂ ∂

(17) 

or 
( ) t q
q ,t qΦ Φ Φ= +                     (18) 

 
Continuing in this fashion we arrive at the result 
 

q
ˆqΦ γ=                                (19) 

where 
( )

( ) 2

2

2

q qt ttq

q t

ˆ q q q

         q

γ Φ Φ Φ

α Φ Φ β Φ

= − − −

− + −
            (20) 

 
and the subscripts q and t indicate partial differentiation 
with respect to q and t, respectively. q  may be isolated 
from equation (11) 
 

1 A 1 T

q
q M F M Φ λ− −= −                   (21) 

 
this may be substituted into equation (20) to obtain the 
linear system that must be solved for the Lagrange 
multipliers 
 

( )
( )

1 T

q q

1 A

q

q ,t M ( q,t )

ˆ                   q ,t M F ( q,t )

Φ Φ λ

γ Φ

−

−= − +
   (22) 

 
This equation along with equation (11) can be solved 
with a variety of explicit methods. Solution with 

explicit methods constrains the time step to be within a 
stability limit. An additional difficulty is that selection 
of the parameters α  and β  in such a way as to force 
satisfaction of the constraint to a lower error tolerance 
decreases the time increment allowed from stability 
considerations. The detailed analysis is described in 
section 4. 
 
3.2 Implicit Constraint Enforcement 
 

Choi et al. proposed implicit constraint enforcement 
[5, 8]. The implicit method [15, 16, 17] is a backward 
first order and is implemented the following way. The 
equation of motion (equation (11)) along with the 
kinematic relationship between q and q are discretized 
as 

 
( ) ( ) 1 T

q

1 A

q t t q t tM ( q,t )

                  tM F ( q,t )

∆ ∆ Φ λ

∆

−

−

+ = −

+
        (23) 

( ) ( ) ( )q t t q t t q t t∆ ∆ ∆+ = + +              (24) 
 
The constraint equations written at new time thus they 
are treated implicitly 
 

( ) 0q( t t ),t tΦ ∆ ∆+ + =                  (25) 
 
Equation (25) is now approximated using a truncated, 
first-order Taylor series  
 

( ) ( )
( ) 0

q

t

q ,t q,t ( q( t t ) q( t ) )

                                    q ,t t

Φ Φ ∆

Φ ∆

+ + −

+ =
     (26) 

 
Again note that the subscripts q and t indicate partial 
differentiation with respect to q and t, respectively. 
Substituting ( )q t t∆+  from equation (23) into 
equation (24) we obtain 
 

( ) ( ) ( )
{ }1 T 1 A

q

q t t q t t q t

        t tM ( q,t ) tM F ( q,t )

∆ ∆

∆ ∆ Φ λ ∆− −

+ = +

− +
(27) 

 
Substitution of this result into equation (26) thus 
eliminating ( )q t t∆+ results in the following linear 
system with λ  the remaining unknown. 
 

( ) ( ) ( )

( ) ( )

1 T

q q t2

1 A

q

1 1q,t M ( q,t ) q,t q,t
t t
1                       q ,t ( q t M F ( q,t ) )
t

Φ Φ λ Φ Φ
∆ ∆

Φ
∆

−

−

= +

+ +

(28) 



Note that the coefficient matrix for this implicit method 
is the same as the coefficient matrix for the Baumgarte 
method. This system is solved for the Lagrange 
multipliers then equations (23) and (24) are used to 
update the generalized coordinates and velocities. 

This constraint-based scheme has several advantages. 
The scheme is simple, the constraints are satisfied 
without the time lag and oscillations associated with 
the Baumgarte method. Perhaps the most important 
advantage of this scheme is that the constraint 
enforcement does not place a stability limit on the time 
step while factoring the same linear system as the 
Baumgarte method requires. Just as with the 
Baumgarte method, constraints are easily added or 
removed from the overall dynamic system enabling the 
use of adaptive constraint activation. 
 
 

 
(a)                                         (b) 

Figure 1: We use 4α β= =  so state feedback gain 
16 8K = ⎡ ⎤⎣ ⎦ . Initial position (0) = 1Φ  (a) and initial 

velocity (0) = 1Φ  (b) 
 
 
4. Stability Analysis of Explicit Constraint 
 

There are two main issues in applying constraint 
forces to deformable object simulations. First, 
constraints might not be met initially ( (0) 0,Φ ≠  

(0) 0Φ ≠ ). Second, numerical errors could accumulate 
over time especially if we’re using a large time step. 
Baumgarte uses a second order state feedback term to 
handle both problems. If initial values of constraints 
are not on legal positions and legal velocities, the 
system might blow up. Figure 1 shows that state 
feedback puts the initial state, which is not meet legal 
positions and legal velocities, back on the legal states. 

As we describe in section 3.1, in stead of solving for 
0Φ = , we solve for  

 
22Φ αΦ β Φ= − −                       (29) 

 

where α  and β  are stabilization factors. Equation 
(29) can be reduced to first order system which is the 
state space equation (15). The differential equation (15) 
is approximated by a difference equation with the 
explicit Euler method and a fixed step size h: 
 

( )IY ( t h ) Y ( t ) hY ( t ) hA Y ( t )+ ≈ + = + ⋅      (30) 
 
The n-th point of the numerical solution is given by: 
 

( )1 I

1 2

n

0

n

n

0 02

Y ( n ) hA Y

1 h
            Y B Y

h hβ α

+ = +

⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

       (31) 

 

with initial condition 0

0

0

y( 0 )
Y

y( 0 )
Φ
Φ

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. This is 

stable if and only if the magnitude of the eigenvalues of 
B  are less than 1. If we assume β α=  as a simple 
case, the eigenvalues satisfy: 
 

( )( )det( I ) 1 0
2

s B s hα− = − − =              (32) 
 
and the stability region is 1 h 1α− < . We define the 
stability region as shown in figure 1. For stability, hα  
must be inside the circle in the figure 2(a). It is 
important to note that different system behavior is 
expected with different pole locations within stability 
region. If it’s very close to the center, it converges well 
without oscillation. The beta term determines the initial 
slope of the curve and high damping alpha term 
mitigates the oscillation.  Note that if we want fast 
convergence and no oscillation, we can use a big value 
for beta but it makes the system unstable for a big time 
step, requiring a small time step. The Baumgarte 
method uses ordinary differential equations to force the 
constraints to zero. This necessarily results in time 
constants associated with the differential equations. 
Implicit constraint enforcement does not have time 
constants because we’re solving algebraic equations 
directly within the truncated first-order Talyor series 
error bound. Therefore, there is no stability limit with 
respect to the time step for this approach. Another 
important advantage of implicit constraint enforcement 
is insensitivity to the initial conditions. By the time of 
constraint activation, initial conditions may not be 
perfectly met or too costly to guarantee at every 
instance. This is particularly important for many actual 
implementations and applications since the preparation 
for the correct initial conditions could be very time 
consuming and tedious. 
 



 
(a)                                         (b) 

Figure 2: Selected choices of parameters in the stability 
region (a) and their distance error over time (b) 
 
 
5. Comparison between Implicit and 
Explicit Constraint 
 

To prove the efficiency of implicit constraint, we 
measure the constraint distance errors using a simple 
bead-on-a-wire simulation where a particle is 
geometrically constrained for maintaining a desired 
distance from the center and initially we set up the 
illegal position and velocity to simulate. We arrange a 
particle has 65 lengths from the center of circle but 
desirable distance is 50 and apply the initially velocity 
10% away from tangential direction with relatively big 
velocity (50 to off tangential direction). The particle 
should follow a circle orbit under relatively difficult 
and initially illegal situation. Figure 3 illustrates the 
distance error comparison with different time step sizes 
(dt = 0.01 (a), dt = 0.05 (b), and dt = 0.1(c)). Although 
we select ideal alpha and beta term for feedback of 
Baumgarte constraint approach, figure 3 (a) and (b) 
show implicit constraint enforcement is much quickly 
and efficiently converge to a solution than Baumgarte 
method. For dt = 0.1 (c), Baumgarte method blows up 
the simulation system but implicit constraint 
enforcement still converges to solution and it allows 
time step size until 2.0. 

Our experimental results show that implicit 
constraint is superior to Baumgarte constraint in terms 
of convergence and stability under illegal position and 
velocity. The immanent artificial damping effect of 
implicit constraint enforcement causes fast 
convergence to the solution. Asymptotic computational 
complexities are same for both methods but implicit 
constraint enforcement has additional constant factor.  
This small disadvantage can be easily overcome by 
employing a bigger time step. In addition, we can 
utilize big time step size for implicit constraint 
enforcement without any cost for finding correct alpha 
and beta feedback coefficients. 
 

(a) 

(b) 

(c) 
Figure 3: Constraint distance errors with different time 
step size 
 
 
7. Conclusion 
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The formulation of implicit constraint enforcement, 
a stability analysis, and integration of geometric 
constraints in a dynamic simulation has been described. 
To control the behavior and trajectories of dynamically 
simulated entities we have suggested the geometric 
constraint enforcement using Lagrange Multipliers. 
This paper has reported numerical stability and 
convergence analysis of geometric constraint 
enforcement technique that is stable over a large time 
step and doesn’t require problem dependent feedback 
terms. Combined with an adaptive constraint activation 
scheme, the implicit constraint enforcement method 
can substantially enhance the controllability of the 
dynamic simulation of deformable objects. 

Our new implicit constraint enforcement method 
used the future time step to estimate the correct 
magnitude of the constraint forces, resulting in better 
stability over bigger time steps. Using an implicit 
constraint method is better for the minimization of 
numerical drift and error accumulation, instead of using 
second order feedback term. It is easy to implement 
and integrate into the existing explicit ODE dynamic 
system.  

Downside of this method is that it’s still the first 
order backward Euler for the constraint enforcement so 
if we need more precise constraint handling, the higher 
order system is desirable. Since we’re comparing two 
different constraint enforcement schemes under the 
framework of Lagrange Multipliers method, the 
inherent limitations of Lagrange Multipliers method 
still remains. As the number of constraint grows, 
solving the linear system to convert geometric 
constraints into constraint forces grows as well.  
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