
Numerical Stability and Convergence Analysis of Geometric Constraint
Enforcement in Dynamic Simulation Systems

Hongjun Jeon1 Min-Hyung Choi2 Min Hong3

1Dept. of Electrical and Computer Engineering, Campus box 425

 University of Colorado, Boulder, Colorado 80309-0425, USA
jeon@colorado.edu

2Dept. of Computer Science and Engineering, University of Colorado at Denver,
Campus Box 109, PO Box 173364, Denver, CO 80217, USA

minchoi@acm.org
3Bioinformatics, University of Colorado Health Sciences Center,
4200 E. 9th avenue Campus Box C-245, Denver, CO 80262, USA

Min.Hong@UCHSC.edu

Abstract

The geometric constraint enforcement using
Lagrange Multipliers is one of the popular methods to
control the behavior and trajectories of dynamically
simulated entities. Therefore, effective and efficient
enforcement and proper integration of the geometric
constraints is the key to a successful constraint
management. This paper describes the formulation and
integration of geometric constraints in a dynamic
simulation and provides a guideline to choose a proper
constraint enforcement method. In addition, the
numerical stability and convergence analysis of two
explicit and implicit constraint enforcement techniques
are reported with respect to the step sizes of
differential equations. Experiments show that our new
implicit constraint enforcement technique demonstrates
a superior stability over large time steps and fast
system response compared to the explicit Baumgarte
method. The implicit constraint enforcement method
uses the future time step to estimate the correct
magnitude of the constraint forces and doesn’t require
problem dependent stabilization parameters as a
second order state feedback term.

1. Introduction

Due to the well-defined structures and the ease of
programming, forward dynamics systems are widely
used to simulate the dynamics of both rigid and
deformable bodies in computer graphics, robotics,
medical visualization and interactive applications.
Dynamic simulations are essential components of many
modern computer graphics and visualization
applications because it produces highly realistic
animations. However, the direct and precise control of
the behavior and trajectories of objects are difficult
because it’s based on a passive simulation model where

we set the initial conditions and external forces to
compute the future motion. For example, a small
adjustment of the input parameters can drastically
affect the subsequent motion [10]. The inverse
dynamics techniques could generate correct initial
conditions from well-defined trajectories but usually
they are very expensive to compute and sensitive to the
numerical errors. Therefore, putting a proper set of
geometric constraints over a dynamic system is widely
used to control the behavior of dynamic system. By
employing the geometric constraints as a control term,
the overall scenario of a dynamic simulation can be
designed in advance by defining the trajectories of a set
of objects. The user interactions can also be interpreted
as a control commands during a simulation, giving
effective environments to direct and steer the
simulation. In addition, geometric constraints have
wide applications beyond the behavior control such as
the formulation of robotic joints, joint limits, the
definition of a valid variable scope, collision detection
and contact resolution, etc. Despite this advantages,
one of the main reasons that the geometric constraints
are not used extensively is the error accumulation and
numerical error drift over time when it’s used in
conjunction with the dynamic system. Several methods
have been suggested for the stabilization of differential
algebraic equations [1, 4, 18, 19]. Such methods often
include constraint differentiation and problem
stabilization. Because of its simplicity, one of the
popular methods is Baumgarte constraint stabilization
[2, 22] that employs a second order stabilization term,
but the proper choice of coefficients dictates the
stability and convergence. A physical explication of
this method is that we are adding additional correction
forces, proportional to the error in the velocity and
position constraints, to counteract drift. The main
difficulty of using Baumgarte stabilization is that it is
not always easy to find an appropriate value for the
coefficients.

Constraints have to conserve the geometric
characteristics such as distance between the nodes,
angle between the adjacent surface elements, during
simulation. Constrained dynamics is concerned with
making objects’ behavior consistent with the forces of
constraint. In a simple mass-spring case, the main idea
of constrained dynamics is that our dynamic
description includes not only discrete masses and
forces, but restrictions on the way the masses are
permitted to move. For example, we might constrain a
mass to move along a specified curve, or require two
masses to remain a specified distance apart. The
problem of constrained dynamics is to make the mass
obey Newton’s laws, and at the same time obey the
geometric constraints.

This paper shows a comparison between implicit and
explicit constraint and provide a guideline to choose an
appropriate constraint enforcement method. Geometric
constraint enforcement technique shows good stability
over large time steps and quick convergence. It is
particularly effective to enforce a hard constraint over a
large time step. It also presents dynamic model in state
space, which describe differential equations, and state
feedback to relocate the eigenvalues of a given system.

2. Background

Some of the most natural and graceful motion in
computer graphics has been achieved by simulating the
physical behavior of objects. Dynamic simulation of
physical systems has become an important approach to
computer graphics and computer animation. The
modeling of physical systems often leads to partial or
directly to ordinary differential equations. The solution
of these equations usually is a major part of the total
computational costs for a simulation or animations.

2.1 Dynamic Model in State Space

The idea of state space comes from the state-variable
method of describing differential equations. In this
method the differential equations describing a dynamic
system are organized as a set of first-order differential
equations in the vector-valued state of the system [6],
and the solution is visualized as a trajectory of this state
vector in space.

Use of Newton’s law typically leads to second-order
differential equations, that is, equations that contain the
second derivative. Differential equations can be
described by a set of simultaneous first-order
differential equations [3, 12]. For the convenience of
the description, we use a simple mass-spring-damper
model but the constraint enforcement technique
presented here can be applied to any dynamic system
with holonomic constraints. We write our system of
equation using 3N generalized coordinates, q, where N

is the number of discrete masses, and the generalized
coordinates are simply the Cartesian coordinates of the
discrete masses.

T

1 1 1 2 2 2 N N N
q x y z x y z ... x y z= ⎡ ⎤⎣ ⎦ (1)

The physical system equation of movement of discrete
masses with external control force, u called control
reference, is

ud s cMq K q K q K+ + = (2)

The purpose of the control reference is to allow us to
assign a set of pole locations for the closed-loop system
that will correspond to satisfactory dynamic response
in terms of rise time and other measures of transient
response. Equation (2), the well known equation
describing the damped oscillator [9], expresses
Newton’s second law of motion for discrete masses. M
is a 3N× 3N diagonal matrix containing discrete nodal
masses, dK is a 3N × 3N matrix containing nodal
damping coefficients, sK is a 3N × 3N matrix
containing nodal spring stiffness constants, and cK is a
3N× 1 positive gain constant vector. Let us define state
variables

T

Q q q= ⎡ ⎤⎣ ⎦ . Then we obtain

u
0 I 0

1 1 1

s d c

Q Q
M K M K M K− − −

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (3)

I 0P Q= ⎡ ⎤⎣ ⎦ (4)

Equation (3) is a state equation and equation (4) is an
output equation for our system (P is the position
vector). Equation (3) and (4) are in the standard form:

uQ AQ B= + (5)
P CQ= (6)

The entries of Q are called state variables. Q is a
6N× 1 state vector, A is a 6N× 6N system matrix, B is
a 6N× 1 input vector, and C is a 1× 6N output vector.

2.2 State Feedback

If we were solving the differential equation exactly,

this procedure would keep the particle exactly on the
geometric constraint, provided we began with valid
initial conditions. In practice, we know often the
numerical solutions to ODE drifts. We must add an
extra feedback term to prevent this numerical drift. The
feedback force needs to be added in after the constraint

force calculation, or else the constraint force will
dutifully cancel it.

One of the first applications of state space methods
to linear systems was that of using feedback of the state
variables to relocate the eigenvalues of a given system,
which achieves better system response characteristics.
The reason for adding feedback is to improve the
system characteristics in some sense. Feedback control
refers to an operation that, in the presence of
disturbances, tends to reduce the difference between
the output of a system and some reference input and
that does so on the basis of this difference. Here only
unpredictable disturbances are so specified, since
predictable or known disturbances can always be
compensated for within the system.

We consider the 6N-dimensional single-variable
state equation (5) and (6). The first step in the state-
space design method is to find the control reference as
feedback of a linear combination of the state variables
that is -u KQ= . This equation tells us that the system
has a constant matrix in the state-vector feedback path.
For an 6Nth-order system there will be 6N feedback
gains and since there are 6N roots of the system, it is
possible that there are enough degrees of freedom to
select arbitrarily any desired root location by choosing
the proper values of K.

Substituting the feedback reference given by
-u KQ= into the system described by equation (5)

yields

()Q AQ BKQ A BK Q= − = − (7)

We wish to modify the given system by the use of
state-variable feedback so as to obtain a new system
with specified eigenvalues [11]. The characteristic
equation of this closed-loop system is

()det 0sI - -A BK⎡ ⎤ =⎣ ⎦ (8)

The control reference design then consists of picking
the gain K so that the roots of equation (8) are in
desirable locations. For now we assume that the desired
locations are known, say , , ,1 2 ns = s s s . Then the
corresponding desired characteristic equation is

() ()() () = 0c 1 2 ns = s - s s - s s - sα (9)

Hence the required elements of K are obtained by
matching coefficients in equation (8) and (9). This
forces the system’s characteristic equation to be
identical to the desired characteristic equation and the
closed-loop poles to be placed at the desired locations.

There are some advantages of feedback control. First,
the system output can be made to follow or track the

specified input function in an automatic fashion.
Second, system performance is less sensitive to
variations of parameter values. Third, system
performance is less sensitive to unwanted disturbances.
Fourth, use of feedback makes it easier to achieve the
desired transient and steady-state response. The
advantages of feedback are gained at the expense of
certain disadvantages. First, the possibility of
instability is introduced and stability becomes a major
design concern. Actually, feedback can either stabilize
or destabilize a system. Second, there is a loss of
system gain, and additional stages of amplification may
be required to compensate for this. Third, additional
components of high precision are usually required to
provide the feedback signals.

3. Constrained Dynamics

One of the most popular methods for integrating a
geometric constraint into a dynamic system is to use
Lagrange multipliers and constraint forces [13, 14, 20,
21]. The constraint-based formulation using Lagrange
multipliers results in a mixed system of ordinary
differential equations and algebraic expressions. Let

(q,t)Φ be the constraint vector made up of m
components each representing an algebraic constraint.
The constraint vector is represented mathematically as

() T1 2 mq ,t (q,t) (q,t) (q,t)Φ Φ Φ Φ= ⎡ ⎤⎣ ⎦ (10)

where the iΦ are the individual scalar algebraic
constraint equations. The total force acting on the
system is the sum of the external force and the
constraint forces. We write the system of equations

T A

q
Mq FΦ λ+ = (11)

() 0q ,tΦ = (12)

where AF are applied, gravitational and spring forces
acting on the discrete masses, λ is a M × 1 vector
containing the Lagrange multipliers and qΦ is the
M× 3N jacobian matrix.

3.1 Explicit Constraint Enforcement

Baumgarte [2, 7] described a technique in which the
differentiated constraint equations are augmented with
terms that are analogous to feedback applied to a
classical second order system. Let me explain more in
detail. Equation (12) is an implicit function for the
constraint. If q is a legal position, then legal velocities
and legal accelerations are all those that satisfy

0Φ = (legal velocity) (13)

0Φ = (legal acceleration) (14)

Let us define state variables

T

Φ Φ⎡ ⎤Θ = ⎣ ⎦ . Then

using the state feedback gain 2 2K β α⎡ ⎤⎣ ⎦= as we
describe section 2.2, we obtain

2

0 1
2

d
dt

Φ Φ
Φ β α Φ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Θ = = ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (15)

From equation (15), the constraint equation with state
feedback can be written by

22 0Φ αΦ β Φ+ + = (16)

The parameters α and β determine the character of
the transient as 0Φ → . Equation (16) may be
expressed in a more convenient form by differentiating
the constraint vector as follows

() () () ()d q,t q,t q,t dq
q,t

dt t q dt
Φ Φ Φ

Φ
∂ ∂

= = +
∂ ∂

(17)

or
() t q
q ,t qΦ Φ Φ= + (18)

Continuing in this fashion we arrive at the result

q
ˆqΦ γ= (19)

where
()

() 2

2

2

q qt ttq

q t

ˆ q q q

 q

γ Φ Φ Φ

α Φ Φ β Φ

= − − −

− + −
 (20)

and the subscripts q and t indicate partial differentiation
with respect to q and t, respectively. q may be isolated
from equation (11)

1 A 1 T

q
q M F M Φ λ− −= − (21)

this may be substituted into equation (20) to obtain the
linear system that must be solved for the Lagrange
multipliers

()
()

1 T

q q

1 A

q

q ,t M (q,t)

ˆ q ,t M F (q,t)

Φ Φ λ

γ Φ

−

−= − +
 (22)

This equation along with equation (11) can be solved
with a variety of explicit methods. Solution with

explicit methods constrains the time step to be within a
stability limit. An additional difficulty is that selection
of the parameters α and β in such a way as to force
satisfaction of the constraint to a lower error tolerance
decreases the time increment allowed from stability
considerations. The detailed analysis is described in
section 4.

3.2 Implicit Constraint Enforcement

Choi et al. proposed implicit constraint enforcement
[5, 8]. The implicit method [15, 16, 17] is a backward
first order and is implemented the following way. The
equation of motion (equation (11)) along with the
kinematic relationship between q and q are discretized
as

() () 1 T

q

1 A

q t t q t tM (q,t)

 tM F (q,t)

∆ ∆ Φ λ

∆

−

−

+ = −

+
 (23)

() () ()q t t q t t q t t∆ ∆ ∆+ = + + (24)

The constraint equations written at new time thus they
are treated implicitly

() 0q(t t),t tΦ ∆ ∆+ + = (25)

Equation (25) is now approximated using a truncated,
first-order Taylor series

() ()
() 0

q

t

q ,t q,t (q(t t) q(t))

 q ,t t

Φ Φ ∆

Φ ∆

+ + −

+ =
 (26)

Again note that the subscripts q and t indicate partial
differentiation with respect to q and t, respectively.
Substituting ()q t t∆+ from equation (23) into
equation (24) we obtain

() () ()
{ }1 T 1 A

q

q t t q t t q t

 t tM (q,t) tM F (q,t)

∆ ∆

∆ ∆ Φ λ ∆− −

+ = +

− +
(27)

Substitution of this result into equation (26) thus
eliminating ()q t t∆+ results in the following linear
system with λ the remaining unknown.

() () ()

() ()

1 T

q q t2

1 A

q

1 1q,t M (q,t) q,t q,t
t t
1 q ,t (q t M F (q,t))
t

Φ Φ λ Φ Φ
∆ ∆

Φ
∆

−

−

= +

+ +

(28)

Note that the coefficient matrix for this implicit method
is the same as the coefficient matrix for the Baumgarte
method. This system is solved for the Lagrange
multipliers then equations (23) and (24) are used to
update the generalized coordinates and velocities.

This constraint-based scheme has several advantages.
The scheme is simple, the constraints are satisfied
without the time lag and oscillations associated with
the Baumgarte method. Perhaps the most important
advantage of this scheme is that the constraint
enforcement does not place a stability limit on the time
step while factoring the same linear system as the
Baumgarte method requires. Just as with the
Baumgarte method, constraints are easily added or
removed from the overall dynamic system enabling the
use of adaptive constraint activation.

(a) (b)

Figure 1: We use 4α β= = so state feedback gain
16 8K = ⎡ ⎤⎣ ⎦ . Initial position (0) = 1Φ (a) and initial

velocity (0) = 1Φ (b)

4. Stability Analysis of Explicit Constraint

There are two main issues in applying constraint
forces to deformable object simulations. First,
constraints might not be met initially ((0) 0,Φ ≠

(0) 0Φ ≠). Second, numerical errors could accumulate
over time especially if we’re using a large time step.
Baumgarte uses a second order state feedback term to
handle both problems. If initial values of constraints
are not on legal positions and legal velocities, the
system might blow up. Figure 1 shows that state
feedback puts the initial state, which is not meet legal
positions and legal velocities, back on the legal states.

As we describe in section 3.1, in stead of solving for
0Φ = , we solve for

22Φ αΦ β Φ= − − (29)

where α and β are stabilization factors. Equation
(29) can be reduced to first order system which is the
state space equation (15). The differential equation (15)
is approximated by a difference equation with the
explicit Euler method and a fixed step size h:

()IY (t h) Y (t) hY (t) hA Y (t)+ ≈ + = + ⋅ (30)

The n-th point of the numerical solution is given by:

()1 I

1 2

n

0

n

n

0 02

Y (n) hA Y

1 h
 Y B Y

h hβ α

+ = +

⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

 (31)

with initial condition 0

0

0

y(0)
Y

y(0)
Φ
Φ

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. This is

stable if and only if the magnitude of the eigenvalues of
B are less than 1. If we assume β α= as a simple
case, the eigenvalues satisfy:

()()det(I) 1 0
2

s B s hα− = − − = (32)

and the stability region is 1 h 1α− < . We define the
stability region as shown in figure 1. For stability, hα
must be inside the circle in the figure 2(a). It is
important to note that different system behavior is
expected with different pole locations within stability
region. If it’s very close to the center, it converges well
without oscillation. The beta term determines the initial
slope of the curve and high damping alpha term
mitigates the oscillation. Note that if we want fast
convergence and no oscillation, we can use a big value
for beta but it makes the system unstable for a big time
step, requiring a small time step. The Baumgarte
method uses ordinary differential equations to force the
constraints to zero. This necessarily results in time
constants associated with the differential equations.
Implicit constraint enforcement does not have time
constants because we’re solving algebraic equations
directly within the truncated first-order Talyor series
error bound. Therefore, there is no stability limit with
respect to the time step for this approach. Another
important advantage of implicit constraint enforcement
is insensitivity to the initial conditions. By the time of
constraint activation, initial conditions may not be
perfectly met or too costly to guarantee at every
instance. This is particularly important for many actual
implementations and applications since the preparation
for the correct initial conditions could be very time
consuming and tedious.

(a) (b)

Figure 2: Selected choices of parameters in the stability
region (a) and their distance error over time (b)

5. Comparison between Implicit and
Explicit Constraint

To prove the efficiency of implicit constraint, we
measure the constraint distance errors using a simple
bead-on-a-wire simulation where a particle is
geometrically constrained for maintaining a desired
distance from the center and initially we set up the
illegal position and velocity to simulate. We arrange a
particle has 65 lengths from the center of circle but
desirable distance is 50 and apply the initially velocity
10% away from tangential direction with relatively big
velocity (50 to off tangential direction). The particle
should follow a circle orbit under relatively difficult
and initially illegal situation. Figure 3 illustrates the
distance error comparison with different time step sizes
(dt = 0.01 (a), dt = 0.05 (b), and dt = 0.1(c)). Although
we select ideal alpha and beta term for feedback of
Baumgarte constraint approach, figure 3 (a) and (b)
show implicit constraint enforcement is much quickly
and efficiently converge to a solution than Baumgarte
method. For dt = 0.1 (c), Baumgarte method blows up
the simulation system but implicit constraint
enforcement still converges to solution and it allows
time step size until 2.0.

Our experimental results show that implicit
constraint is superior to Baumgarte constraint in terms
of convergence and stability under illegal position and
velocity. The immanent artificial damping effect of
implicit constraint enforcement causes fast
convergence to the solution. Asymptotic computational
complexities are same for both methods but implicit
constraint enforcement has additional constant factor.
This small disadvantage can be easily overcome by
employing a bigger time step. In addition, we can
utilize big time step size for implicit constraint
enforcement without any cost for finding correct alpha
and beta feedback coefficients.

(a)

(b)

(c)
Figure 3: Constraint distance errors with different time
step size

7. Conclusion

Error Comparison
(Baumgarte Constraint VS Implicit Constraint)

dt = 0.01

-4

-2

0

2

4

6

8

10

12

14

16

0 1 2 3 4

Simulation Time

D
is

ta
nc

e
Er

ro
r

Baumgarte Constraint
(alpha = 20, beta = 100)
Implicit Constraint

Error Comparison
(Baumgarte Constraint VS Implicit Constraint)

dt = 0.05

-10

-5

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

Simulation Time

D
is

ta
nc

e
Er

ro
r

Baumgarte Constraint
(alpha = 20, beta = 100)
Implicit Constraint

Error Comparison
(Baumgarte Constraint VS Implicit Constraint)

dt = 0.1

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

Simulation Time

D
is

ta
nc

e
Er

ro
r

Baumgarte Constraint
(alpha = 20, beta = 100)
Implicit Constraint

The formulation of implicit constraint enforcement,
a stability analysis, and integration of geometric
constraints in a dynamic simulation has been described.
To control the behavior and trajectories of dynamically
simulated entities we have suggested the geometric
constraint enforcement using Lagrange Multipliers.
This paper has reported numerical stability and
convergence analysis of geometric constraint
enforcement technique that is stable over a large time
step and doesn’t require problem dependent feedback
terms. Combined with an adaptive constraint activation
scheme, the implicit constraint enforcement method
can substantially enhance the controllability of the
dynamic simulation of deformable objects.

Our new implicit constraint enforcement method
used the future time step to estimate the correct
magnitude of the constraint forces, resulting in better
stability over bigger time steps. Using an implicit
constraint method is better for the minimization of
numerical drift and error accumulation, instead of using
second order feedback term. It is easy to implement
and integrate into the existing explicit ODE dynamic
system.

Downside of this method is that it’s still the first
order backward Euler for the constraint enforcement so
if we need more precise constraint handling, the higher
order system is desirable. Since we’re comparing two
different constraint enforcement schemes under the
framework of Lagrange Multipliers method, the
inherent limitations of Lagrange Multipliers method
still remains. As the number of constraint grows,
solving the linear system to convert geometric
constraints into constraint forces grows as well.

8. References

[1] David Baraff and Andrew Witkin, “Large steps in cloth
simulation”, SIGGRAPH 98 Conference Proceedings, pages
43-54, July 1998.
[2] Baumgarte J, “Stabilization of Constraints and Integrals
of Motion in Dynamical Systems”, Computer Methods in
Applied Mechanics, 1:1-36, 1972.
[3] Chi-Tsong Chen, Linear System Theory and Design,
Third edition, Oxford university press, 1999.
[4] Michael Hauth, “Numerical Technique for Cloth
Simulation”, SIGGRAPH 2003 Course #29, July, 2003
[5] Choi Min-Hyung, Hong Min, and Samuel Welch,
“Implicit Constraint Enforcement for Stable and Effective
Control of Cloth Behavior”, A technical report form Univ. of
Colorado at Denver, Computer Science and Engineering
Department TR-03-01, 2004.
[6] Gene F. Franklin, J. David Powell, and Abbas Emami-
Naeini, Feedback Control of Dynamic Systems, Third edition,
Addison-Wesley, 1995.
[7] Hang E. J., Computer Aided Kinematics and Dynamics of
Mechanical Systems, Volume I: Basic Method, Allyn and
Bacon, 1989.

[8] Hong Min, Choi Min-Hyung, and Ravi Yelluripati,
“Intuitive Control of Deformable Object Simulation using
Geometric Constraints”, Conference on Imaging Science,
Systems, and Technology (CISST), 2003.
[9] Jer-Nan Juang, Applied System Identification, Prentice
Hall, 1994.
[10] Jovan Popovic, Steven M. Seitz, Michael Erdmann,
Zoran Popovic and Andre Witkin. “Interactive Manipulation
of Rigid Body Simulations”, In Computer Graphics
(Proceedings of SIGGRAPH 2000), ACM SIGGRAPH,
Annual Conference Series, 209-217, 2000.
[11] Katsuhiko Ogata, Modern Control Engineering, Third
edition, Prentice Hall, 1997.
[12] Thomas Kailath, Linear Systems, Prentice Hall, 1980.
[13] G. Strang, Introduction to Applied Mathematics,
Wellesley-Cambridge Press, MA, 1986.
[14] D. Terzopoulos and H. Qin, “Dynamics nurbs with
geometric constraints for interactive sculpting”, ACM
Transactions on Graphics, 13:103-136, 1994.
[15] D. Terzopoulos and K. Fleischer, “Deformable Models”,
Visual Computer, 4:306-331, 1988
[16]] D. Terzopoulos and K. Fleischer, “Modeling inelastic
deformation: Viscoelasticity, plasticity, fracture”, In
Computer Graphics (Proc. SIGGRAPH), volume 22, pages
269-278, ACM, August 1988.
[17] D. Terzopoulos, J.C. Platt, and A.H. Barr, “Elastically
deformable models”, Computer Graphics (Proc. SIGGRAPH),
21:205-214, 1987.
[18] Uri M. Ascher, Hongsheng Shin, and Sebastian Reich,
“Stabilization of DAEs and invariant manifolds”, Numerische
Mathematik, Springer Verlag, Numer. Math. 67: 131-149,
1994.
[19] Uri M. Ascher and L. Petzold, “Stability of
computational methods for constrained dynamics systems”,
SIAM J. Numer. Anal. 28, 1097-1120, 1993.
[20] John C. Platt and Alan H. Barr, “ Constraint methods for
flexible models”, Computer Graphics, Volume 22: 279-288,
1988.
[21] Andrew Witkin, Michael Gleicher, and William Welch,
“Interactive Dynamics”, In Proceedings 1990 Symposium on
Interactive 3d Graphics, volume 24, pages 11–21, March
1990.
[22] Michael B. Cline and Dinesh K. Pai, “Post-stabilization
for rigid body simulation with contact and constraints”, In
Proceeding IEEE International Conference on Robotics and
Automation, 2003.

