
Optimization of Collision Handling based on Differential

Thresholds of Human Perception

 Shaila Abraham Min-Hyung Choi
 Cachematrix Department of Computer Science and Engineering

 Denver, CO 80206 University of Colorado Denver

 Denver, CO 80217

Abstract - An efficient collision handling mechanism is

essential for most computer animation and to achieve realistic

yet efficient animations we need to consider human perception

in these animation systems. Current states of art collision

handling algorithms do not consider human perception in

depth, particularly in differentiating thresholds of various

collision parameters. Yet the human perception plays a

significant role in the quality of perceived animation when

multiple collisions are presented in an animated scene. The

responsiveness of the objects at the right time and the right

behavior makes the animation system look natural. In this

paper we describe an approach, which approximates objects

by using an interruptible detection algorithm to proximately

test for collisions between different objects. Based on the

inputs from the user study made we are able to adjust the

various parameters in our collision detection algorithm and

were able to get considerable speed up.

Keywords: Collision handling, human perception, collision

detection, computer animation, real-time animation

1 Introduction

 With the high demand for highly interactive systems all

over the world, the developers of animation systems are

forced to produce more realistic, real-time animations. By

exploiting user interactions and human perception of

animation we can make the animation system realistic.

Collision handling places high computational load on

graphics workstations. From the human perception we find

that any dynamic or casual event is dependant on the way in

which objects are touching or colliding and on the way that

they behave post collision. In computer graphics, we see that

handling the various events of collision is a core part of any

animation system and consumes a large proportion of the

computation time for each step of a simulation. Thus we see

several researches are made in collision handling in computer

animation, both from the computational and perceptual

perspectives. The solutions to address these collision handling

issues in computer graphics include but not limited to adding

more computational power, add hardware accelerators, and

develop algorithms that may be implemented on multiple

processors.

However, these solutions make the issues to be postponed

rather than eliminating them. People are highly sensitive to

any physical event that occurs in their area of concern. There

are some basic events that any human would not accept say

for example one solid object cannot merge into another; on

seeing and sensing a solid object we assume the properties of

the solid based on the way in which they interact with each

other. People judge whether objects are animate or inanimate

based on the perception that the objects are moving of their

own volition, or being moved by another object (referred to as

the perception of causality). Much recent research, listed in

reference [1], has shown that attention is one of the most

important and interesting features of human perception,

which can also be exploited for improving the efficiency and

realism of graphical systems. Time critical approaches trade

accuracy for speed, simplifying where necessary, to meet the

demands of real-time rates throughout the simulation [3].

With the increase in the number of independently moving

objects in the scene, the computational load also increases.

We can reduce perceived inaccuracy in an animation by

taking perceptual factors into account, these are done by

estimating where on the screen a viewer is looking, either

using analysis from user survey, or by attaching more

importance to certain objects or regions in a scene. Collision

handling plays a major role in any physically based animation

where we can save computation time by optimizing the speed

or accuracy. One of the major bottlenecks in any physically

based animation includes collision handling.

We present a method in which we trade various parameters

from the viewer’s perspective. Section 2 presents the

motivation to this work. In Section 3, we describe an

architecture which performs collision detection based inputs

from human’s perception. We see some test scenarios in

Section 4. In Section 5 we see about human threshold. In

Section 6 we see the details of our experiments and we

conclude in Section 7 with the approach to handle collision in

an optimized manner based on human perception.

2 Motivation

 Designing any computer animation, especially with

collision handling and detection is a challenging task. Human

character animation draped with cloth is a good example that

requires intricate and precise collision handling. When

objects move collisions that occur must be detected and

processed robustly in a timely manner. If the object is a

virtual human being collision between its clothes and hair,

and self-collisions between limbs and digits must be

considered. We should also be handling any physical

interaction between the virtual human and the objects

surrounding it such as touching, hitting and throwing. These

actions are usually triggered by collision. If there are more

complex objects in the environment, the burden on the

computational machine which powers the animation will be

higher. This leads to a greater need for extremely rapid

collision detection. Increasing performance of any computer

animation is often driven by hardware developments, but

significant opportunities exist to increase performance via

algorithmic improvement. Yet, human does not have keen

ability to detect small physical incorrectness or to discern if

any micro action must be handled in a particular way to

preserve suspension of disbelief.

The main motivation for this work comes from the success of

similar approaches used in stating that human perception is

important for collision detection, where knowledge of the

focus of humans that allows resolution and computational

power to be concentrated on areas or objects in a display that

are most important. We can make some savings in the

computationally expensive area of collision detection and

physical response determination. For example, considering

low level of detail, proxy or fake objects could be used for

collisions between objects that are not currently being

attended or focused on by the viewer, or we can ignore

response to the objects that are less likely to be noticed. We

also want to determine if there is something about such

dynamical events themselves i.e., their velocity or orientation

or collision accuracy that attracts attention in some way.

Based on the above assumptions we can say that we should

be able to develop a model that does prediction for collision

based on human perception.

3 Software Architecture

 In this paper we explain briefly how collision detection

for objects in 3D Space was implemented. Our approach

started with having many objects colliding continuously.

Then we did an in depth study of various parameters used in

collision detection followed by the user study to gain

knowledge about the user’s perspective of various collision

parameters. Based on the study we adjusted the collision

handling algorithm to attain good speed up. We are using

standard algorithms to compute intersection between ray and

plane [1].

3.1 Model Geometry

Spheres were chosen as model objects due to their no

orientation, no view point changes, and no deformation. The

purpose of using a very simple geometry is to isolate the

effect of individual human perception category of

gap/penetration, velocity, and angle. For sphere, it's easy to

predict the direction of movement after collision. While for

other general rigid body objects, especially when they are

occluded or spins with high angular velocity, the human

ability to predict the behavior is drastically diminished and

therefore human test subjects are having hard time to testify if

a presented animation is right or wrong. This will lower the

purity of perceptual threshold test on each category, resulting

in general degradation. It would produce vague, unidentifiable

source or perceptual errors. For example, if objects are

sharply edged, human typically don't have ability to discern

the consequential motion, so even very unlikely behaviors

could be considered acceptable. To prevent this and to get

direct relation between human perception and probable object

behavior, a sphere was chosen as a model object. Also

everyone has pretty good estimate of bounce off behavior of

spheres.

3.2 Sphere-Sphere Collision Detection

 A sphere is represented using its center and its radius.

Determining if two spheres collide is easy. By finding the

distance between the two centers we can determine if they

intersect, if the distance is less than the sum of their two

radiuses. The problem lies in determining if 2 moving spheres

collide where 2 sphere move during a time step from one

point to another. Their paths cross in-between but this is not

enough to prove that an intersection occurred (they could not

pass at a different time) nor can the collision point be

determined. When complex shapes are used or when these

equations are not available or can not be solved, a different

method has to be used. The start points, endpoints, time step,

velocity (direction of the sphere + speed) of the sphere and a

method of how to compute intersections of static spheres is

pretty straight forward. To compute the intersection, the time

step has to be sliced up into smaller pieces. Then we move the

spheres according to that sliced time step using its velocity,

and check for collisions. If at any point collision is found

(which means the spheres have already penetrated each other)

then we take the previous position as the intersection point

(we could start interpolating between these points to find the

exact intersection position, but that is mostly not required).

If the time steps are smaller, the slices will increase with the

accuracy of collision detection. Consider an example with

time step 1 and with 3 slices In this case we would be

checking the two balls for collision at the following time

intervals 0, 0.33, 0.66, 1 and so on.

3.3 Collision Response

 To determine how to respond after hitting static objects

like bounding planes is as important as finding the collision

point itself. Using the algorithms and functions described, the

exact collision point, the normal at the collision point and the

time within a time step in which the collision occurs can be

found. To determine how to respond to a collision, laws of

physics have to be applied. When an object collides with the

surface its direction changes that is it bounces off. The angle

of the new direction (or reflection vector) with the normal at

the collision point is the same as the original direction vector.

When a sphere hits another sphere getting the collision

response is much more difficult. Ordinary differential

equations of particle dynamics have to be solved and the final

velocities are determined.

3.4 Euler’s Equation & Explosions

 To simulate realistic movement with collisions,

determining the collision point and computing the response is

not enough. Movement based upon physical laws also has to

be simulated. The most widely used method for doing this is

using a simple first order Euler’s method. As indicated all the

computations are going to be performed using time steps.

This means that the whole simulation is advanced in certain

time steps during which all the movement, collision and

response tests are performed. As an example we can

advanced a simulation 2 sec. on each frame. Based on Euler

equations, the velocity and position at each new time step is

computed as follows:

Velocity_New = Velocity_Old + Acceleration*TimeStep

Position_New = Position_Old + Velocity_New*TimeStep

Now the objects are moved and tested against collision using

this new velocity. The acceleration for each object is

determined by accumulating the forces which are acted upon

it and divide by its mass according to this equation: Force =

mass * acceleration.

Every time a collision takes place an explosion is triggered at

the collision point. A nice way to model explosions is to alpha

blend two polygons which are perpendicular to each other and

have as the center the point of interest (here intersection

point). The polygons are scaled and disappear over time. The

disappearing is done by changing the alpha values of the

vertices from 1 to 0, over time. To be correct we had to sort

the polygons from back to front according to their eye point

distance, but disabling the Depth buffer writes (not reads) also

does the trick. Notice that we limit our number of explosions

to maximum 200 per frame, if additional explosions occur and

the buffer is full, the explosion is discarded.

4 Test Scenarios

The following are the various test scenarios considered in

our experiments.

4.1 Collision Gap Accuracy Test

 Newton’s third law of motion states that when two

bodies collide they exert equal and opposite forces on one

another, we can clearly see that human perception greatly

relies on the dynamic properties of the world like mass of the

objects, direction in which collision happens and the like. For

example, a collision of 2 moving objects on collision will

cause both the objects to move but there will be definitely

change in direction of movement. The human brain appears to

have very low-level processes that allow people to distinguish

between animate and inanimate objects. Do we need each and

every object in an animated environment to exactly collide?

Or are we ok on some level of accuracy of collision? Let’s

say that as a user I’m ok with two objects if they overlap each

other slightly. Using this test scenario for an animation

environment we would be able to adjust the collision

algorithm so that we could use the computational resources

for other purposes.

4.2 Collision Velocity and Direction Test

 This test scenario is used to determine how fast the

objects movement should be so that users are good on the

animation. We provide various adjustable parameters like

variation in after collision speed, variation in initial velocity.

We are also using factors such as size and speed of objects to

choose the levels of detail at which to render objects in a

scene before and after collision. Based on user’s input like “I

liked them better when they were moving with maximum

speed” or, contradictorily: “I liked them better when they

were side by side and moved with normal speed”; “They

looked more bouncy when they were moving at medium

speed”; we were able to change the collision algorithm to

obtain the best collision effect.

4.3 After Collision Change in Angle Test

 This test scenario is used to determine if the users are ok

with a slight deviation in the collision angle. By default let’s

say the angle of deviation of objects is zero. Are the users ok

with a 20 degree deviation of the colliding object after

collision? Or the users are more particular on the degree of

deviation of the colliding object saying it should be always

zero. For this test we provide the users with series of varying

sliders. We also note the direction of the deviation after

collision. The users can also do combination of all the above

test scenarios.

5 Human Perception Threshold

 The collision effects can be exploited in a real-time

application by tracking the user’s fixation position. When the

viewer is looking directly at a collision, it would be given a

higher priority than a collision occurring at a slight different

location, which itself would receive a higher priority than

other collisions presented more peripherally. To achieve more

realistic animations we need to conduct many user surveys to

get the human perception of animation. Several user surveys

were carried out for the various collision handling scenarios

like accuracy of separation between the colliding objects,

velocity of the moving objects, angle of deviation after

collision.

5.1 Accuracy

 In this case objects that do not touch each other but

leave a gap, decreases with increasing strangeness of the

collision point. 2 Spheres Red and White were used.

Collisions were presented at various accuracy levels ranging

from -100% to 100%. There were many replications at each

accuracy level, each in a different screen location. The order

of presentation was also randomized. The users have the

ability to pause or stop the collision at any time. The pause

collision button can be turned on to view the exact accuracy.

To verify the accuracy level we added accuracy detail radio

button which gives us the exact accuracy when the collision

gap goes over 0%. The spheres appeared and moved towards

each other for 1 second, and then moved apart for 1 second

after touching each other, leaving a small gap of 3 millimeters

(mm) when the accuracy is set to 20%, or a larger gap of 2.8

centimeters (cm) when the accuracy is set to 100%. Based on

the user survey we are able to see that people are more

particular in accuracy.

5.2 Velocity

 The objects that had more speed or velocity are

compared to objects with minimum or normal speed. 2

Spheres Red and White were used. Collisions were presented

at various post collision ball speed levels ranging from 0% to

200%. Default setting is at 100% of ball speed after collision.

The users have the ability to pause or stop the collision at any

time. The show direction button displays the pre and post

collision velocities and direction. To verify the optimal

velocity level we added show direction button which gives us

the exact direction of the balls pre and post collision. The

spheres appeared and moved towards each other for 1 second,

and then moved apart for 1 second after touching each other,

the after collision speed is doubled when the percentage is

made to be 200% while it is reduced to half when we set it to

50%. The ball speed can be changed for one of the balls or for

both.

5.3 Bounce off Angle

 The objects that had 90
0

deviations are compared to

objects with 0
0
 or with objects that deviated 45

0
. 2 Spheres

Red and White were used. Collisions were presented at

various post collision ball angle deviations ranging from -90
0

to 90
0
. Default setting is at 0

0
 of deviation post collision. The

users have the ability to pause or stop the collision at any

time. The show direction button displays the pre and post

collision velocities and direction. To verify the bounce off

angle we added show direction button which gives us the

exact direction of the balls pre and post collision. The spheres

appeared and moved towards each other for 1 second, and

then moved apart for 1 second after touching each other, the

after collision angle is made based on the selection.

6 Experiments

Collision events can be classified into different types listed

below:

1. Objects approaching each other

2. Objects touching each other and then reversing

3. Objects showing repulsion effect.

4. Objects penetrating

By varying the accuracy percentage we are able to simulate

the above collision events.

6.1 Collision Event

 In our experiments, three types of collisions may occur (see

figure 1): - "True" collisions, where entities touch, the

collision is detected, and fully accurate collision response

occurs. We may consider this as being the control situation for

experimental purposes. (Figure 1)

Figure 1: True Collision – 0% Collision Gap Accuracy

- Interpenetrations, where the entities also touch, but the

collision are not detected or are ignored by the application.

The entities are therefore allowed to continue on their

previous path, even though it causes them to merge into each

other to a greater or lesser degree. (Figure 2)

Figure 2: Interpenetrations – Negative Collision Gap

Accuracy

- Repulsions, where the entities are close to each other but

have not actually touched. (Figure 3)

Figure 3: Repulsions – 100% Collision Gap Accuracy

The application decides to take the chance that they are

actually touching, and accepts this situation as a true collision.

This may then cause the entities to change their paths, causing

a repulsion effect. The application can control which type of

collision anomaly will occur most often, if not always. It

could be argued that a detailed user study conducted led us to

our approach into which type of anomaly is most preferred by

the viewer. However, based on our user study we were able to

see that most of the users preferred true collisions as opposed

to other collision events.

6.2 Effect of Velocity

In our experiments, two types of velocity changes are being

considered:

1. Initial velocity Pre Collision for the two balls.

2. Post Collision Speed of One ball or two balls.

Our first experiment was to keep the velocity by default that is

the initial velocity is 100%. The figure below shows the

direction of the objects here both the balls have the same

initial velocity but in the opposite direction. (Figure 4)

 Figure 4: Initial Velocity: 100% for both objects

Now let’s see the case when the initial velocity is increased to

200% the direction of the velocity is represented by the line.

Here it’s obvious that the velocity is higher. This is shown in

(Figure 5).

Figure 5: Initial Velocity 200% for both objects

Similarly we did experiments on varying the after collision

speed from 0% to 200% for one ball and also for 2 balls.

Based on the user survey we are able to see that people are ok

with a speed variation of 0% to 20% on an average.

6.3 Effect of Post Collision Angle

In this experiment, we study the effect of post collision angle

change on collision detection. We could change the deviation

angle from -90
0
 to 90

0
. (Figure 6) shows the collision effect

with 0
0
 angle of deviation

.

Figure 6: 0
0
 Angle of Deviation after Collision

In the above figure the black lines represent the pre collision

velocity and direction while the post collision is shown in

grey and red colors. Now let’s see the effect of changing the

post collision angle from 0
0
 to 90

0
. The after collision angle is

represented in the diagram below (Figure 7). Here we see that

the new direction post collision is deviated 90
0
.

Figure 7: 900 Angle of Deviation after Collision

Based on the above experiments being held in our user study

we were able to determine the tolerable limit for the post

angle of deviation.

6.4 Location

In our experiments we also determine the useful field of

view (UFV) for the perception of collision anomalies, i.e. to

test what effect the location (e.g. above, below, above left

etc...) of a collision has. In [Nies et al. 1998] they found that a

75 per cent confidence region for a visual search task was

quite elliptic, with performance being better in the horizontal

regions rather than in the vertical. Other effects were also

evident, such as better detection to the right than to the left.

They did find that there were big differences between subjects

in the size and shape of the useful field of view. Hence, we

will need to test collisions occurring in different regions,

determined by the 9 cardinal directions, i.e. left, right, up,

down, up-left, up-right, down-left, and down-right. The above

experiments were conducted by dividing the screen into

multiple sections 2, 4, 16 and studying the collision effect in

specific areas. In the diagram below (Figure 8) we divide the

screen into 4 sections with various accuracies of 0%, 25%,

50% and 100% accuracy.

Figure 8: Screen with varying accuracy in 4 Section having

0%, 25%, 50%, and 100%

Based on our user survey we changed our algorithm by

dividing the screen into sections and varying the accuracy at

different sections, so that the accuracy in the corner of the

room is < 100% while at the center of the screen we had

100%.

6.5 Results

It was essential to evaluate the techniques proposed, in

order to justify and guide the later psychophysical studies.

This set of experiments tested collision processing

performance at the highest possible level of accuracy, i.e.

processing every collision with 100% accuracy. In order to

reach an overall target frame rate of at least 10 frames per

second, the collision handing should take up only a part of the

100 milliseconds available per frame. Therefore, in the

absence of any load balancing schemes, we can estimate that

at most 50 milliseconds should be spent on collision handling

per frame.

We can see that collision handling times are unacceptably

high for 50, 70 and 100 objects (Figure 9). We can see from

this data that with large numbers of objects, our frame times

will be too slow and variable for real-time performance.

Figure 9: Collision handling with 70 bouncing balls

The parameters used for this experiment are: Time: Time

spent on collision handling and # Of Collisions: Number of

collisions. The mean results for all measured parameters are

shown in (Table 1). The experiment is run for 10 seconds and

the results are gathered. Based on these results its clear that as

the number of objects in the screen increase the time spent on

collision handling increases. (Figure 10) provides a graphical

overview of these data.

Table 1: Results from collision with no interruption

 20 30 50 70 100

Time (ms) 1 16 252 300 646

Collisions # 2 24 92 67 84

0

100

200

300

400

500

600

700

20 30 50 70 100

Objects on Screen

T
im

e
 /

 #
 o

f
C

o
ll

is
io

n
s

Time (ms) # of Collisions

Figure10: Collision handling time with no interruption

The user survey shows us that viewers have the following

tolerable level for the accuracy, velocity and angle. We took

the mean of them all and we get accuracy tolerance = 1% that

people are more concerned about accuracy; velocity tolerance

= 5%; and angle tolerance = 20%. Taking into consideration

of these values we did the analysis for 20, 30, 50, 70 and 100

objects with varying accuracy levels in the screen and our

results are tabulated in the table below (Table 2). The

experiment is run for 10 seconds and the results are gathered.

Often binary search is used to detect exact collision time to

precisely enforce contact conditions and repulsion. Finding of

exact collision time becomes very complex when multiple

collisions occur at a given time interval, and proper collision

order sorting is also very time consuming. In the section

below we see how the various criteria’s promote the

performance improvement of any animation system.

6.5.1 Collision Gap and Penetration

Collision gap adjustment, both gap and penetration allows

us to eliminate costly backtracking to previous fraction of

exact collision time search and collision order sorting

operations. The ability to vary these criteria helps us to avoid

spending more time on exact collision for every object. When

we find the tolerable limit for collision gap or penetration we

are able to apply the limit in the algorithm so that we could

save the computational resources and lower the number of

collisions.

6.5.2 Change of Angle and Velocity

By altering the bounce-off angles and velocity, we can

intentionally avoid collisions that’s about to occur. With

some quick and approximate trajectory checks and collision

time prediction, we can adjust the velocity and bounce off

angles of post colliding objects to avoid eminent future

collisions. This process is essentially altering the original

behavior of simulated objects but since the alternation is

within the differential threshold of human perceptual limit,

they are unnoticeable and quite acceptable to users. Obviously

we don't use an extensive search algorithm to avoid

complicated secondary and tertiary level collisions, since our

search algorithms is pretty simple one dimensional, i.e.

looking into the direction of motion and see if there's any

other ball in the direction of motion in a near field. Having a

more sophisticated collision avoidance algorithm may further

reduce the possible collisions globally but at the same time it

takes more computation for the overhead, resulting in not

much gain in overall throughputs.

The main advantage of this algorithm includes gain in

computational power with the reduction in the number of

collisions by adapting these limits. When the accuracy of

collision is varied most collisions are ignored and therefore

the numbers of collisions are reduced. But the animation is

realistic since the actual collisions happen in the center of the

screen. The behavior of the animation is different when the

collisions in the peripherals are ignored. But since these

surveys are based on human perception we find the collisions

to be more realistic by considering collisions only in the

center of the screen and ignoring the collisions at the

peripherals. (Figure 11) provides a graphical overview of

these data. From the two graphs we see a gain of about 7

times in the collision handling time spent when we adjusted

our collision handling algorithm.

Table 2: Results of Collision with user study input

 20 30 50 70 100

Time (ms) 0 30 31 30 94

Collisions # 1 12 13 9 8

0

100

200

300

400

500

600

700

20 30 50 70 100

Objects on Screen

T
im

e
 /

 #
 o

f
C

o
ll

is
io

n
s

Time (ms) # of Collisions

 Figure 11: Collision handling time with user study input

7 Conclusions

 In this paper we study and provide a solution to handle

efficient collisions between objects by exploiting human

perceptual threshold. We noticed that there is significant role

of human perception by adjusting the various parameters to

achieve speed up. We have developed the perceptually-

adaptive collision detection algorithm that essentially alters

the true correct object behaviors within the perceptual limit to

minimize the number of collisions. The algorithm parameters

are adjusted based on human subject test to get better speed

up. The main algorithm is described in Section 3 and 4, along

with a new model of human visual perception of collisions. In

Section 5 and 6 we showed the feasibility of using this model

as the basis for perceptual scheduling of collisions in a real-

time animation of large numbers of homogeneous objects. It

has been demonstrated that by using a ray based collision

algorithm, perceived inaccuracy can be significantly

improved. As described in Section 3 and 4, we validated this

model psychophysically. This work is not only relevant for

the problem of Collision Detection, but also for other

applications where the processing of fine detail leads to a

computational bottleneck. Our model could easily be adapted

to accomplish perceptually-sensitive real-time shadows,

shading, and other such techniques. Our psychophysical

experiments can provide a starting point for other computer

graphics practitioners who wish to enhance the realism of

their real-time animations. For future work we would

continue to work on multi level search, and global collision

number optimization. We would also work on more in-depth

studies for generic objects including deformable objects as

our viable next steps. We think we have also contributed to

the fields of Human Computer Interaction for interactive

computer systems. The work in this paper can also be used in

conjunction with analysis in functionality of human brain.

8 References

[1] Carol O'Sullivan. ; Collisions and Attention, ACM

Transactions on Applied Perception, 2(3), pp309- 321,

(2005)

[2]http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=3

0

[3] John Dingliana and Carol O'Sullivan; Graceful

Degradation of Collision handling in physically based

animation, Computer Graphics Forum (Eurographics 2000),

19(3, pp239 - 247, (2000)

[4] Palmer, I.J.; and Grimsdale, R.L.; Collision detection for

animation using sphere-trees. Computer Graphics Forum,

v14 i2. 105-116

[5] C. Lauterbach; S. Yoon; D. Tuft; D. Minorca; RT-

DEFORM: interactive ray tracing of dynamic scenes using

BVHs, in: IEEE Symposium on Interactive Ray Tracing,

2006, pp. 39-46

[6] Carol O’Sullivan and John Dingliana; Collisions and

Perception, ACM Transactions on Graphics. Vol. 20, No. 3.

July 2001.

[7] Christer Ericson.; Real-Time Collision Detection (The

Morgan Kaufmann Series in Interactive 3-D Technology),

Morgan Kaufmann Publishers Inc., San Francisco, CA, 2004

[8] C. Lauterbach; S. Yoon; D. Tuft; D. Minorca;

RTDEFORM: interactive ray tracing of dynamic scenes

using

BVHs, in: IEEE Symposium on Interactive Ray Tracing,

2006, pp. 39-46

[9] Carol O'Sullivan and Richard Lee; Collisions and

Attention, ACM SIGGRAPH Symposium on Applied

perception in graphics and visualization (APGV'04), pp165,

(2004)

