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Abstract - An efficient collision handling mechanism is 

essential for most computer animation and to achieve realistic 

yet efficient animations we need to consider human perception 

in these animation systems. Current states of art collision 

handling algorithms do not consider human perception in 

depth, particularly in differentiating thresholds of various 

collision parameters. Yet the human perception plays a 

significant role in the quality of perceived animation when 

multiple collisions are presented in an animated scene. The 

responsiveness of the objects at the right time and the right 

behavior makes the animation system look natural. In this 

paper we describe an approach, which approximates objects 

by using an interruptible detection algorithm to proximately 

test for collisions between different objects. Based on the 

inputs from the user study made we are able to adjust the 

various parameters in our collision detection algorithm and 

were able to get considerable speed up. 

Keywords: Collision handling, human perception, collision 

detection, computer animation, real-time animation 

 

1 Introduction 

  With the high demand for highly interactive systems all 

over the world, the developers of animation systems are 

forced to produce more realistic, real-time animations. By 

exploiting user interactions and human perception of 

animation we can make the animation system realistic. 

Collision handling places high computational load on 

graphics workstations. From the human perception we find 

that any dynamic or casual event is dependant on the way in 

which objects are touching or colliding and on the way that 

they behave post collision. In computer graphics, we see that 

handling the various events of collision is a core part of any 

animation system and consumes a large proportion of the 

computation time for each step of a simulation. Thus we see 

several researches are made in collision handling in computer 

animation, both from the computational and perceptual 

perspectives. The solutions to address these collision handling 

issues in computer graphics include but not limited to adding 

more computational power, add hardware accelerators, and 

develop algorithms that may be implemented on multiple 

processors.  

However, these solutions make the issues to be postponed 

rather than eliminating them. People are highly sensitive to 

any physical event that occurs in their area of concern. There 

are some basic events that any human would not accept say 

for example one solid object cannot merge into another; on 

seeing and sensing a solid object we assume the properties of 

the solid based on the way in which they interact with each 

other. People judge whether objects are animate or inanimate 

based on the perception that the objects are moving of their 

own volition, or being moved by another object (referred to as 

the perception of causality). Much recent research, listed in 

reference [1], has shown that attention is one of the most 

important and interesting features of human perception, 

which can also be exploited for improving the efficiency and 

realism of graphical systems. Time critical approaches trade 

accuracy for speed, simplifying where necessary, to meet the 

demands of real-time rates throughout the simulation [3]. 

With the increase in the number of independently moving 

objects in the scene, the computational load also increases. 

We can reduce perceived inaccuracy in an animation by 

taking perceptual factors into account, these are done by 

estimating where on the screen a viewer is looking, either 

using analysis from user survey, or by attaching more 

importance to certain objects or regions in a scene. Collision 

handling plays a major role in any physically based animation 

where we can save computation time by optimizing the speed 

or accuracy. One of the major bottlenecks in any physically 

based animation includes collision handling.  

We present a method in which we trade various parameters 

from the viewer’s perspective. Section 2 presents the 

motivation to this work. In Section 3, we describe an 

architecture which performs collision detection based inputs 

from human’s perception. We see some test scenarios in 

Section 4. In Section 5 we see about human threshold. In 

Section 6 we see the details of our experiments and we 

conclude in Section 7 with the approach to handle collision in 

an optimized manner based on human perception. 

2 Motivation 

 Designing any computer animation, especially with 

collision handling and detection is a challenging task. Human 



character animation draped with cloth is a good example that 

requires intricate and precise collision handling. When 

objects move collisions that occur must be detected and 

processed robustly in a timely manner. If the object is a 

virtual human being collision between its clothes and hair, 

and self-collisions between limbs and digits must be 

considered. We should also be handling any physical 

interaction between the virtual human and the objects 

surrounding it such as touching, hitting and throwing. These 

actions are usually triggered by collision. If there are more 

complex objects in the environment, the burden on the 

computational machine which powers the animation will be 

higher. This leads to a greater need for extremely rapid 

collision detection. Increasing performance of any computer 

animation is often driven by hardware developments, but 

significant opportunities exist to increase performance via 

algorithmic improvement. Yet, human does not have keen 

ability to detect small physical incorrectness or to discern if 

any micro action must be handled in a particular way to 

preserve suspension of disbelief.  

The main motivation for this work comes from the success of 

similar approaches used in stating that human perception is 

important for collision detection, where knowledge of the 

focus of humans that allows resolution and computational 

power to be concentrated on areas or objects in a display that 

are most important. We can make some savings in the 

computationally expensive area of collision detection and 

physical response determination. For example, considering 

low level of detail, proxy or fake objects could be used for 

collisions between objects that are not currently being 

attended or focused on by the viewer, or we can ignore 

response to the objects that are less likely to be noticed. We 

also want to determine if there is something about such 

dynamical events themselves i.e., their velocity or orientation 

or collision accuracy that attracts attention in some way. 

Based on the above assumptions we can say that we should 

be able to develop a model that does prediction for collision 

based on human perception. 

3 Software Architecture 

 In this paper we explain briefly how collision detection 

for objects in 3D Space was implemented. Our approach 

started with having many objects colliding continuously. 

Then we did an in depth study of various parameters used in 

collision detection followed by the user study to gain 

knowledge about the user’s perspective of various collision 

parameters. Based on the study we adjusted the collision 

handling algorithm to attain good speed up. We are using 

standard algorithms to compute intersection between ray and 

plane [1]. 

3.1 Model Geometry 

Spheres were chosen as model objects due to their no 

orientation, no view point changes, and no deformation. The 

purpose of using a very simple geometry is to isolate the 

effect of individual human perception category of 

gap/penetration, velocity, and angle. For sphere, it's easy to 

predict the direction of movement after collision. While for 

other general rigid body objects, especially when they are 

occluded or spins with high angular velocity, the human 

ability to predict the behavior is drastically diminished and 

therefore human test subjects are having hard time to testify if 

a presented animation is right or wrong. This will lower the 

purity of perceptual threshold test on each category, resulting 

in general degradation. It would produce vague, unidentifiable 

source or perceptual errors. For example, if objects are 

sharply edged, human typically don't have ability to discern 

the consequential motion, so even very unlikely behaviors 

could be considered acceptable. To prevent this and to get 

direct relation between human perception and probable object 

behavior, a sphere was chosen as a model object. Also 

everyone has pretty good estimate of bounce off behavior of 

spheres. 

 

3.2 Sphere-Sphere Collision Detection 

 A sphere is represented using its center and its radius. 

Determining if two spheres collide is easy. By finding the 

distance between the two centers we can determine if they 

intersect, if the distance is less than the sum of their two 

radiuses. The problem lies in determining if 2 moving spheres 

collide where 2 sphere move during a time step from one 

point to another. Their paths cross in-between but this is not 

enough to prove that an intersection occurred (they could not 

pass at a different time) nor can the collision point be 

determined. When complex shapes are used or when these 

equations are not available or can not be solved, a different 

method has to be used. The start points, endpoints, time step, 

velocity (direction of the sphere + speed) of the sphere and a 

method of how to compute intersections of static spheres is 

pretty straight forward. To compute the intersection, the time 

step has to be sliced up into smaller pieces. Then we move the 

spheres according to that sliced time step using its velocity, 

and check for collisions. If at any point collision is found 

(which means the spheres have already penetrated each other) 

then we take the previous position as the intersection point 

(we could start interpolating between these points to find the 

exact intersection position, but that is mostly not required).  

If the time steps are smaller, the slices will increase with the 

accuracy of collision detection. Consider an example with 

time step 1 and with 3 slices In this case we would be 

checking the two balls for collision at the following time 

intervals 0, 0.33, 0.66, 1 and so on. 

3.3 Collision Response 

 To determine how to respond after hitting static objects 

like bounding planes is as important as finding the collision 

point itself. Using the algorithms and functions described, the 

exact collision point, the normal at the collision point and the 



time within a time step in which the collision occurs can be 

found. To determine how to respond to a collision, laws of 

physics have to be applied. When an object collides with the 

surface its direction changes that is it bounces off. The angle 

of the new direction (or reflection vector) with the normal at 

the collision point is the same as the original direction vector.  

When a sphere hits another sphere getting the collision 

response is much more difficult. Ordinary differential 

equations of particle dynamics have to be solved and the final 

velocities are determined. 

3.4 Euler’s Equation & Explosions 

 To simulate realistic movement with collisions, 

determining the collision point and computing the response is 

not enough. Movement based upon physical laws also has to 

be simulated. The most widely used method for doing this is 

using a simple first order Euler’s method. As indicated all the 

computations are going to be performed using time steps. 

This means that the whole simulation is advanced in certain 

time steps during which all the movement, collision and 

response tests are performed. As an example we can 

advanced a simulation 2 sec. on each frame. Based on Euler 

equations, the velocity and position at each new time step is 

computed as follows:  

Velocity_New = Velocity_Old + Acceleration*TimeStep 

Position_New = Position_Old + Velocity_New*TimeStep 

Now the objects are moved and tested against collision using 

this new velocity. The acceleration for each object is 

determined by accumulating the forces which are acted upon 

it and divide by its mass according to this equation:  Force = 

mass * acceleration. 

Every time a collision takes place an explosion is triggered at 

the collision point. A nice way to model explosions is to alpha 

blend two polygons which are perpendicular to each other and 

have as the center the point of interest (here intersection 

point). The polygons are scaled and disappear over time. The 

disappearing is done by changing the alpha values of the 

vertices from 1 to 0, over time. To be correct we had to sort 

the polygons from back to front according to their eye point 

distance, but disabling the Depth buffer writes (not reads) also 

does the trick. Notice that we limit our number of explosions 

to maximum 200 per frame, if additional explosions occur and 

the buffer is full, the explosion is discarded. 

4 Test Scenarios 

The following are the various test scenarios considered in 

our experiments. 

 

4.1 Collision Gap Accuracy Test 

 Newton’s third law of motion states that when two 

bodies collide they exert equal and opposite forces on one 

another, we can clearly see that human perception greatly 

relies on the dynamic properties of the world like mass of the 

objects, direction in which collision happens and the like. For 

example, a collision of 2 moving objects on collision will 

cause both the objects to move but there will be definitely 

change in direction of movement. The human brain appears to 

have very low-level processes that allow people to distinguish 

between animate and inanimate objects. Do we need each and 

every object in an animated environment to exactly collide? 

Or are we ok on some level of accuracy of collision? Let’s 

say that as a user I’m ok with two objects if they overlap each 

other slightly. Using this test scenario for an animation 

environment we would be able to adjust the collision 

algorithm so that we could use the computational resources 

for other purposes. 

4.2 Collision Velocity and Direction Test 

 This test scenario is used to determine how fast the 

objects movement should be so that users are good on the 

animation. We provide various adjustable parameters like 

variation in after collision speed, variation in initial velocity. 

We are also using factors such as size and speed of objects to 

choose the levels of detail at which to render objects in a 

scene before and after collision. Based on user’s input like “I 

liked them better when they were moving with maximum 

speed” or, contradictorily: “I liked them better when they 

were side by side and moved with normal speed”; “They 

looked more bouncy when they were moving at medium 

speed”; we were able to change the collision algorithm to 

obtain the best collision effect.  

4.3 After Collision Change in Angle Test 

 This test scenario is used to determine if the users are ok 

with a slight deviation in the collision angle. By default let’s 

say the angle of deviation of objects is zero. Are the users ok 

with a 20 degree deviation of the colliding object after 

collision? Or the users are more particular on the degree of 

deviation of the colliding object saying it should be always 

zero. For this test we provide the users with series of varying 

sliders. We also note the direction of the deviation after 

collision. The users can also do combination of all the above 

test scenarios.  

5 Human Perception Threshold 

    The collision effects can be exploited in a real-time 

application by tracking the user’s fixation position. When the 

viewer is looking directly at a collision, it would be given a 

higher priority than a collision occurring at a slight different 

location, which itself would receive a higher priority than 

other collisions presented more peripherally. To achieve more 



realistic animations we need to conduct many user surveys to 

get the human perception of animation. Several user surveys 

were carried out for the various collision handling scenarios 

like accuracy of separation between the colliding objects, 

velocity of the moving objects, angle of deviation after 

collision. 

 

5.1 Accuracy 

 In this case objects that do not touch each other but 

leave a gap, decreases with increasing strangeness of the 

collision point. 2 Spheres Red and White were used. 

Collisions were presented at various accuracy levels ranging 

from -100% to 100%. There were many replications at each 

accuracy level, each in a different screen location. The order 

of presentation was also randomized. The users have the 

ability to pause or stop the collision at any time. The pause 

collision button can be turned on to view the exact accuracy. 

To verify the accuracy level we added accuracy detail radio 

button which gives us the exact accuracy when the collision 

gap goes over 0%. The spheres appeared and moved towards 

each other for 1 second, and then moved apart for 1 second 

after touching each other, leaving a small gap of 3 millimeters 

(mm) when the accuracy is set to 20%, or a larger gap of 2.8 

centimeters (cm) when the accuracy is set to 100%. Based on 

the user survey we are able to see that people are more 

particular in accuracy. 

5.2 Velocity 

 The objects that had more speed or velocity are 

compared to objects with minimum or normal speed. 2 

Spheres Red and White were used. Collisions were presented 

at various post collision ball speed levels ranging from 0% to 

200%. Default setting is at 100% of ball speed after collision. 

The users have the ability to pause or stop the collision at any 

time. The show direction button displays the pre and post 

collision velocities and direction. To verify the optimal 

velocity level we added show direction button which gives us 

the exact direction of the balls pre and post collision. The 

spheres appeared and moved towards each other for 1 second, 

and then moved apart for 1 second after touching each other, 

the after collision speed is doubled when the percentage is 

made to be 200% while it is reduced to half when we set it to 

50%. The ball speed can be changed for one of the balls or for 

both. 

5.3 Bounce off Angle 

 The objects that had 90
0 

deviations are compared to 

objects with 0
0
 or with objects that deviated 45

0
. 2 Spheres 

Red and White were used. Collisions were presented at 

various post collision ball angle deviations ranging from -90
0
 

to 90
0
. Default setting is at 0

0
 of deviation post collision. The 

users have the ability to pause or stop the collision at any 

time. The show direction button displays the pre and post 

collision velocities and direction. To verify the bounce off 

angle we added show direction button which gives us the 

exact direction of the balls pre and post collision. The spheres 

appeared and moved towards each other for 1 second, and 

then moved apart for 1 second after touching each other, the 

after collision angle is made based on the selection. 

6 Experiments 

Collision events can be classified into different types listed 

below:  

1. Objects approaching each other 

2. Objects touching each other and then reversing  

3. Objects showing repulsion effect. 

4. Objects penetrating 

By varying the accuracy percentage we are able to simulate 

the above collision events. 

 

6.1 Collision Event 

 In our experiments, three types of collisions may occur (see 

figure 1): - "True" collisions, where entities touch, the 

collision is detected, and fully accurate collision response 

occurs. We may consider this as being the control situation for 

experimental purposes. (Figure 1) 

                           
Figure 1: True Collision – 0% Collision Gap Accuracy 

 

- Interpenetrations, where the entities also touch, but the 

collision are not detected or are ignored by the application. 

The entities are therefore allowed to continue on their 

previous path, even though it causes them to merge into each 

other to a greater or lesser degree. (Figure 2) 

         
Figure 2: Interpenetrations – Negative Collision Gap 

Accuracy 

 

- Repulsions, where the entities are close to each other but 

have not actually touched. (Figure 3) 

       
Figure 3: Repulsions – 100% Collision Gap Accuracy 

 

The application decides to take the chance that they are 

actually touching, and accepts this situation as a true collision. 

This may then cause the entities to change their paths, causing 

a repulsion effect. The application can control which type of 

collision anomaly will occur most often, if not always. It 

could be argued that a detailed user study conducted led us to 



our approach into which type of anomaly is most preferred by 

the viewer. However, based on our user study we were able to 

see that most of the users preferred true collisions as opposed 

to other collision events. 

 

6.2 Effect of Velocity 

In our experiments, two types of velocity changes are being 

considered: 

1. Initial velocity Pre Collision for the two balls. 

2. Post Collision Speed of One ball or two balls.  

Our first experiment was to keep the velocity by default that is 

the initial velocity is 100%. The figure below shows the 

direction of the objects here both the balls have the same 

initial velocity but in the opposite direction. (Figure 4) 

      
           Figure 4: Initial Velocity: 100% for both objects 

 
Now let’s see the case when the initial velocity is increased to 

200% the direction of the velocity is represented by the line. 

Here it’s obvious that the velocity is higher. This is shown in 

(Figure 5). 

        
Figure 5: Initial Velocity 200% for both objects 
 

Similarly we did experiments on varying the after collision 

speed from 0% to 200% for one ball and also for 2 balls. 

Based on the user survey we are able to see that people are ok 

with a speed variation of 0% to 20% on an average. 

 

6.3 Effect of Post Collision Angle 

In this experiment, we study the effect of post collision angle 

change on collision detection. We could change the deviation 

angle from -90
0
 to 90

0
. (Figure 6) shows the collision effect 

with 0
0
 angle of deviation 

. 

Figure 6: 0
0
 Angle of Deviation after Collision 

 

In the above figure the black lines represent the pre collision 

velocity and direction while the post collision is shown in 

grey and red colors. Now let’s see the effect of changing the 

post collision angle from 0
0
 to 90

0
. The after collision angle is 

represented in the diagram below (Figure 7). Here we see that 

the new direction post collision is deviated 90
0
. 

 
Figure 7: 900 Angle of Deviation after Collision 

 
Based on the above experiments being held in our user study 

we were able to determine the tolerable limit for the post 

angle of deviation. 

 

6.4 Location 

In our experiments we also determine the useful field of 

view (UFV) for the perception of collision anomalies, i.e. to 

test what effect the location (e.g. above, below, above left 

etc...) of a collision has. In [Nies et al. 1998] they found that a 

75 per cent confidence region for a visual search task was 

quite elliptic, with performance being better in the horizontal 

regions rather than in the vertical. Other effects were also 

evident, such as better detection to the right than to the left. 

They did find that there were big differences between subjects 

in the size and shape of the useful field of view. Hence, we 

will need to test collisions occurring in different regions, 

determined by the 9 cardinal directions, i.e. left, right, up, 

down, up-left, up-right, down-left, and down-right. The above 

experiments were conducted by dividing the screen into 

multiple sections 2, 4, 16 and studying the collision effect in 

specific areas. In the diagram below (Figure 8) we divide the 

screen into 4 sections with various accuracies of 0%, 25%, 

50% and 100% accuracy. 

 

 
Figure 8: Screen with varying accuracy in 4 Section having 

0%, 25%, 50%, and 100%  

 

Based on our user survey we changed our algorithm by 

dividing the screen into sections and varying the accuracy at 

different sections, so that the accuracy in the corner of the 

room is < 100% while at the center of the screen we had 

100%. 

 

6.5 Results 

It was essential to evaluate the techniques proposed, in 

order to justify and guide the later psychophysical studies. 

This set of experiments tested collision processing 

performance at the highest possible level of accuracy, i.e. 

processing every collision with 100% accuracy. In order to 

reach an overall target frame rate of at least 10 frames per 



second, the collision handing should take up only a part of the 

100 milliseconds available per frame. Therefore, in the 

absence of any load balancing schemes, we can estimate that 

at most 50 milliseconds should be spent on collision handling 

per frame. 

We can see that collision handling times are unacceptably 

high for 50, 70 and 100 objects (Figure 9). We can see from 

this data that with large numbers of objects, our frame times 

will be too slow and variable for real-time performance. 

 

 
Figure 9: Collision handling with 70 bouncing balls 

 
The parameters used for this experiment are: Time: Time 

spent on collision handling and # Of Collisions: Number of 

collisions. The mean results for all measured parameters are 

shown in (Table 1). The experiment is run for 10 seconds and 

the results are gathered. Based on these results its clear that as 

the number of objects in the screen increase the time spent on 

collision handling increases. (Figure 10) provides a graphical 

overview of these data. 

 

Table 1: Results from collision with no interruption 

 20 30 50 70 100 

Time (ms) 1 16 252 300 646 

Collisions # 2 24 92 67 84 
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Figure10: Collision handling time with no interruption 

 

The user survey shows us that viewers have the following 

tolerable level for the accuracy, velocity and angle. We took 

the mean of them all and we get accuracy tolerance = 1% that 

people are more concerned about accuracy; velocity tolerance 

= 5%; and angle tolerance = 20%. Taking into consideration 

of these values we did the analysis for 20, 30, 50, 70 and 100 

objects with varying accuracy levels in the screen and our 

results are tabulated in the table below (Table 2). The 

experiment is run for 10 seconds and the results are gathered. 

Often binary search is used to detect exact collision time to 

precisely enforce contact conditions and repulsion. Finding of 

exact collision time becomes very complex when multiple 

collisions occur at a given time interval, and proper collision 

order sorting is also very time consuming. In the section 

below we see how the various criteria’s promote the 

performance improvement of any animation system. 

6.5.1 Collision Gap and Penetration 

Collision gap adjustment, both gap and penetration allows 

us to eliminate costly backtracking to previous fraction of 

exact collision time search and collision order sorting 

operations. The ability to vary these criteria helps us to avoid 

spending more time on exact collision for every object. When 

we find the tolerable limit for collision gap or penetration we 

are able to apply the limit in the algorithm so that we could 

save the computational resources and lower the number of 

collisions.  

6.5.2 Change of Angle and Velocity 

By altering the bounce-off angles and velocity, we can 

intentionally avoid collisions that’s about to occur.  With 

some quick and approximate trajectory checks and collision 

time prediction, we can adjust the velocity and bounce off 

angles of post colliding objects to avoid eminent future 

collisions. This process is essentially altering the original 

behavior of simulated objects but since the alternation is 

within the differential threshold of human perceptual limit, 

they are unnoticeable and quite acceptable to users. Obviously 

we don't use an extensive search algorithm to avoid 

complicated secondary and tertiary level collisions, since our 

search algorithms is pretty simple one dimensional, i.e. 

looking into the direction of motion and see if there's any 

other ball in the direction of motion in a near field. Having a 

more sophisticated collision avoidance algorithm may further 

reduce the possible collisions globally but at the same time it 

takes more computation for the overhead, resulting in not 

much gain in overall throughputs.  

The main advantage of this algorithm includes gain in 

computational power with the reduction in the number of 

collisions by adapting these limits. When the accuracy of 

collision is varied most collisions are ignored and therefore 

the numbers of collisions are reduced. But the animation is 

realistic since the actual collisions happen in the center of the 

screen. The behavior of the animation is different when the 

collisions in the peripherals are ignored. But since these 

surveys are based on human perception we find the collisions 

to be more realistic by considering collisions only in the 

center of the screen and ignoring the collisions at the 

peripherals. (Figure 11) provides a graphical overview of 

these data. From the two graphs we see a gain of about 7 

times in the collision handling time spent when we adjusted 

our collision handling algorithm.  

 



Table 2: Results of Collision with user study input 

 20 30 50 70 100 

Time (ms) 0 30 31 30 94 

Collisions # 1 12 13 9 8 

 

0

100

200

300

400

500

600

700

20 30 50 70 100

Objects on Screen

T
im

e
 /

 #
 o

f 
C

o
ll

is
io

n
s

Time (ms) # of Collisions

 
     Figure 11: Collision handling time with user study input 

 

7 Conclusions 

 In this paper we study and provide a solution to handle 

efficient collisions between objects by exploiting human 

perceptual threshold. We noticed that there is significant role 

of human perception by adjusting the various parameters to 

achieve speed up. We have developed the perceptually-

adaptive collision detection algorithm that essentially alters 

the true correct object behaviors within the perceptual limit to 

minimize the number of collisions. The algorithm parameters 

are adjusted based on human subject test to get better speed 

up. The main algorithm is described in Section 3 and 4, along 

with a new model of human visual perception of collisions. In 

Section 5 and 6 we showed the feasibility of using this model 

as the basis for perceptual scheduling of collisions in a real-

time animation of large numbers of homogeneous objects. It 

has been demonstrated that by using a ray based collision 

algorithm, perceived inaccuracy can be significantly 

improved. As described in Section 3 and 4, we validated this 

model psychophysically. This work is not only relevant for 

the problem of Collision Detection, but also for other 

applications where the processing of fine detail leads to a 

computational bottleneck. Our model could easily be adapted 

to accomplish perceptually-sensitive real-time shadows, 

shading, and other such techniques. Our psychophysical 

experiments can provide a starting point for other computer 

graphics practitioners who wish to enhance the realism of 

their real-time animations. For future work we would 

continue to work on multi level search, and global collision 

number optimization. We would also work on more in-depth 

studies for generic objects including deformable objects as 

our viable next steps. We think we have also contributed to 

the fields of Human Computer Interaction for interactive 

computer systems. The work in this paper can also be used in 

conjunction with analysis in functionality of human brain. 
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