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Abstract: The primary goal of cloth simulation is to express object behavior in a
realistic manner and achieve real-time performance by following the fundamental
concept of physic. In general, the mass–spring system is applied to real-time cloth
simulation with three types of springs. However, hard spring cloth simulation
using the mass–spring system requires a small integration time-step in order to
use a large stiffness coefficient. Furthermore, to obtain stable behavior, constraint
enforcement is used instead of maintenance of the force of each spring. Constraint
force computation involves a large sparse linear solving operation. Due to the
large computation, we implement a cloth simulation using adaptive constraint
activation and deactivation techniques that involve the mass–spring system and
constraint enforcement method to prevent excessive elongation of cloth. At the
same time, when the length of the spring is stretched or compressed over a defined
threshold, adaptive constraint activation and deactivation method deactivates the
spring and generate the implicit constraint. Traditional method that uses a serial
process of the Central Processing Unit (CPU) to solve the system in every frame
cannot handle the complex structure of cloth model in real-time. Our simulation
utilizes the Graphic Processing Unit (GPU) parallel processing with compute sha-
der in OpenGL Shading Language (GLSL) to solve the system effectively. In this
paper, we design and implement parallel method for cloth simulation, and experi-
ment on the performance and behavior comparison of the mass–spring system,
constraint enforcement, and adaptive constraint activation and deactivation tech-
niques the using GPU-based parallel method.

Keywords: Adaptive constraint; cloth simulation; constraint enforcement; GLSL
compute shader; mass–spring system; parallel GPU

1 Introduction

The applications of physically based simulation have been widely applied in many industries, including
film or animation, education, games, health care, and AR application. The main goal of physically-based
simulation is to simulate rigid and non-rigid objects that interact and behave like their real-world
counterparts [1]. When modeling and simulating 3D objects, the fundamental concepts of physical
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behavior, such as Newton’s law of motion and universal gravitational law, should be respected. In contrast, in
order to construct realistic real-time models, interactive simulation of cloth has been studied for decades. The
main purpose of cloth simulation is efficient, unconditionally stable, and real-time performance (higher than
30 frames per second). In some situations, cloth simulation turns to a stiff system that is strongly resistant to
stretching motions. Alternatively, the mass–spring system (MSS) which is applied in interactive game
application, is fast and simple to implement. However, it is difficult for the MSS to find the proper spring
coefficients and a suitable integration time-step is required. The core idea behind the mass–spring system
of cloth simulation is that it is based on particle simulation with the cloth object, treating the cloth as a
grid of nodes. The grid is the connection between node or particle and its neighbor, and is known as a
spring to resist forces from pulling apart when internal and external force are applied. The mass–spring
damper model uses three types of springs (structural, shear, and bending) to preserve the cloth
behavior [2]. However, when large time-step and stiffness coefficient are used, the spring force exhibits
numerical instability, which results in the elasticity effect or blow-up situation, and in order to maintain
the restriction of node-to-node distance, constraint force is used instead.

Since the computing and rendering a deformable cloth object is remarkably challenging and time-
consuming, the level of detail in the cloth object has been optimized to achieve the real-time performance
and realistic visual appearance [3]. The naïve algorithm of cloth simulation that use a serial process of a
CPU to compute force and find a new position in every frame cannot handle the complex structure of
cloth simulation in real-time. Parallel processing using the graphic processing unit (GPU) has been
considered for the cloth simulation since it operates on multi-cores and thousands of threads in massive
parallelism [4]. The single instruction multiple data (SIMD) architecture is a well-known model, due to
its effective results in terms of latency, bandwidth, and memory accessing. Nonetheless, additional
general purpose of computing on graphic processing unit (GPGPU) programs or libraries such as CUDA
or OpenCL is required to utilize parallel GPU [5]. Therefore, OpenGL is used for rendering, so the
additional GPGPU program or library can be excluded, since GLSL can be utilized to perform parallel
processing of the cloth simulation by using OpenGL compute shader as a GPU kernel program.

In this paper, we present the implementation of cloth simulation using OpenGL shading language as a
GPU-based parallel program. The specific contributions of our paper are:

� Cloth simulation is implemented based on the mass–spring system, implicit constraint enforcement,
and adaptive constraint activation and deactivation, using the compute shader.

� The parallel method of sparse linear solving algorithm is utilized to accelerate cloth simulation using
implicit constraint enforcement.

The performance comparison result of the cloth simulation using the mass–spring system, constraint
enforcement and adaptive constraint activation and deactivation method that are implemented on GLSL
compute shader are provided as well. In order to compare and contrast each method understandably, we
conduct an experiment on the scenario that the cloth receives a strong force pushing the cloth object.

2 Related Work

Previous approaches related to the method of cloth simulation have been researched to represent the
deformable cloth object in real-time. Finite element method (FEM) is a time-consuming method, due to
the method obtaining an accurate result. Therefore, to accelerate the performance, Rodriguez-Navarro
et al. [6] implemented a cloth simulation system based on FEM in the GPU. However, FEM required
heavy computation to return an accurate result. Müller et al. [7] applied a position-based dynamic method
to simulate the cloth object. The position-based method ignores the velocity and force properties, which
directly displace the position of each node. Alternatively, the force-based method accumulates internal
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and external forces, and computes the acceleration based on Newton’s second law of motion. The time
integration method is then used to update the velocities and the positions of the object, respectively.
Generally, the force-based method of the mass–spring system was introduced and was further developed
to achieve realistic and real-time modelling [8–10]. Parallel cloth simulation was implemented using
OpenGL GLSL 4.3 [11]. However, additional operation is required to sum the forces of all springs that
are connected to the mass node. Therefore, in order to compute the spring force using parallel GPU, the
node-centric algorithm was proposed [12]. In order to displace each node in the spring to become the rest
length of the spring at each given time-step, a dynamic inverse constraint on springs that were over-
elongated was applied [8]. The distance reduction was applied on springs that could stretch more or
compress less than a threshold of ± 10% of the spring rest length. However, the displacement of each
node directly ignores the physical consequence of the dynamic behavior of motion. In order to prevent
the excessive elongation of springs, implicit constraints are put to constrain the length of elongated
springs beyond 10% [13].

3 Preliminaries

3.1 Mass–Spring System

Fig. 1 shows the three types of spring structure the mass–spring model uses, in order to maintain the
overall cloth shape:

Each spring is created by two nodes, where the positions of those two nodes are denoted by p1& p2, and
v1& v2 are the velocities. f1& f2 are the forces acting on both nodes to keep the original shape of the spring. In
contrast, spring force is added to adjust the stretching or compressing spring to the initial spring with initial
distance or rest length L0, as illustrated in Fig. 2:

Force acting on both nodes is known as spring force, which can be computed using Hooke’s law, as
shows in Eq. (1) and Eq. (2). Parameter ks is the spring stiffness coefficient, and together with the
damping coefficient kd is used to compute the spring force [12]:

f1 ¼ � ksðjp1 � p2j � L0Þ þ kd
ðv1 � v2Þ � ðp1 � p2Þ

jp1 � p2j
� �� �

p1 � p2
jp1 � p2j (1)

f2 ¼ �f1 (2)

Figure 1: Three types of springs structure of the mass–spring model

Figure 2: Stretching behavior of a single spring
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The motion of equations using the explicit Euler integration method is applied to update the node’s
position p and velocity v at time t + Δt, where Δt is an integration time-step.

vðtþDtÞ ¼ vðtÞ þ
�
gravityþ F

M

�
� Dt (3)

pðtþDtÞ ¼ pðtÞ þ vðtþDtÞ � Dt (4)

3.2 Implicit Constraint Enforcement

Hong et al. [13] use the future time-step in the implicit constraint enforcement method to estimate the
correct magnitude of the constraint forces. q represents a list of position with size of 3n, and n is the total
number of nodes within the cloth model q = [x1, y1, z1, x2, y2, z2… xn, yn, zn]

T. Then �ðqðtÞ; tÞ is a
constraint vector of m Algebraic constraint, while Φi is a scalar algebraic constraint equation. This
distance constraint can be defined by the following equation:

� ¼ ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2 � r2 (5)

�ðq; tÞ ¼ ½�1ðq; tÞ; �2ðq; tÞ . . . �mðq; tÞ�T (6)

The system of equation can be written as follows in Eq. (7):

M€qþ �T
q� ¼ FA (7)

In the constraint optimization problem, the implicit constraint has to solve the problem �ðq; tÞ ¼ 0. M is
the mass matrix which is the diagonal element that stores the node’s mass, FA is the accumulation of gravity
force and constraint forces interacting with the node, λ is the Lagrange multiplier vector with m size, and Φq

is the Jacobian matrix size of m×3n, which is made by partial differentiation with respect to q [14]. The
kinematic relationship between q and _q, as well as the equation of motion can be defined as follows equation:

qðt þ DtÞ ¼ qðtÞ þ DtM�1�T
q�þ DtM�1FAðq; tÞ (8)

qðt þ DtÞ ¼ qðtÞ þ Dt _qðt þ DtÞ (9)

The constraint function of next time is treated implicitly, and defined by Eq. (10) as follows:

�ðqðt þ DtÞ; t þ DtÞ ¼ 0 (10)

By using a truncated first order Taylor series to approximate Eqs. (10), (11) is obtained:

�ðqðtÞ; tÞ þ �qðqðtÞ; tÞðqðt þ DtÞ � qðtÞÞ þ �tðqðtÞ; tÞDt ¼ 0 (11)

Substituting of Eqs. (8) & (9) into Eq. (11) can eliminate q(t + Δt):

�qðq; tÞM�1�T
q� ¼ 1

Dt2
�ðq; tÞ þ 1

Dt
�tðq; tÞ þ �qðq; tÞ 1

Dt
_qðtÞ þM�1FAðq; tÞ

� �
(12)

Eq. (12) can be expressed by Ax = B, a sparse linear system, where A is the coefficient sparse matrix, B
the right-hand side vector, and x is a Lagrange multiplier solved by the direct or iterative method. In contrast,
a precise and effective algorithm is required in order to solve the system.
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3.3 Compute Shader

In OpenGL 4.3 core, GLSL provides the possibility for parallel computing advantage by using the
graphic processing unit (GPU) without an additional environment configuration, and executes in different
pipeline with the rendering pipeline [15]. A Compute shader is a shader that uses GLSL based on the
syntax of C programming language similar to vertex or fragment shader, Compute shader can be
executed using the glDispatchCompute() command with a given workgroup dimension block in three
dimensions. Since compute shader is executed on the GPU with massive parallelism, compute space is
required to accelerate the computation performance. Designing and implementing the compute space of
compute shader is dependent on the problem and type of data. Fig. 3 shows the scheme of compute space
dimension.

Compute space consists of three-dimensions of the workgroup, with each element of the workgroup
consisting of a local workgroup. A single local workgroup is a group of invocations or threads that is
defined as 1D, 2D, and 3D in compute shader. Furthermore, compute shader program executes for all
invocations in non-sequential order in parallel GPU. Correspondingly, shared memory can be accessed
for any invocation within the same local workgroup as well. Compute shader can use the uniform
variables that are declared in OpenGL’s function. There are limitations on the local workgroup size due to
the specification of hardware.

Shader Storage Buffer Object (SSBO) is OpenGL’s buffer object for incoherent memory access. SSBO
is used to store extremely large arrays of structured data. It can share data between different program
(compute shader). There are two standard layout qualifiers of buffer in compute shader to be concerned
with, due to the rule of memory offset per data block [16]. Fig. 4 illustrates the rules of the standard
layout qualifier of buffer. The first standard layout qualifier is std 140, which is required padding data in
order to pack elements into one block of the buffer, so an array of type has to be mapped before
initializing the SSBO. Differently, the other one of the standard layout qualifiers, std 430 does not require
offset data for packing element to buffer. This also means, an array of float in C/C++ is tightly packed
directly into a buffer.

Figure 3: The compute space of compute shader
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4 Implementation of Cloth Simulation

In this paper, parallel cloth simulation is implemented using the mass–spring method, constraint
enforcement method, and adaptive constraint activation/deactivation method for performance and
behavior comparison. Information related to simulation such as the node’s position, velocity, and force,
are stored in SSBO, due to task distribution of compute shader and the Single Instruction Multiple Data
(SIMD) architecture of the GPU. Initial data of SSBO are required in order to start the simulation as well.

4.1 Mass–Spring System on the GPU

A single node or particle possibility has 6 spring connections (2 structure, 2 shear and 2 bend springs) or
12 directions of force in total where 6 directions of force act on another node, and 6 directions of force are
received from another node. Fig. 5 demonstrates the direction of spring in the mass–spring structure.

The nodes in a cloth model located as 2D structure, 2D workgroup are used to access the node
information storing in SSBO through the index of invocation. We define the size of the local workgroup
as (x = 16, y = 16, z = 1), to accumulate spring force in compute shader. Two nodes are required to
compute the spring force by Eq. (1). Since SSBO is stored in the 1D array of data, global index is
computed to invoke data in SSBO. Tab. 1 shows how compute shader computes the spring force on the
particle or node. After particle force computation, the new node’s position can be computed as well. We
use only 1D workgroup to update nodes with local workgroup dimension determined as (x = 1,024, y = 1,
z = 1). The global workgroup dimension is used to dispatch compute shader program. Tab. 2 shows the
compute shader pseudo code to update each node’s position and velocity.

Figure 4: SSBO memory layout qualifiers’ rule

Figure 5: Structure of spring direction
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4.2 Constraint Enforcement on the GPU

The Constraint force computation requires complex and large data storage. So, we use SSBO to contain
data of the constraint enforcement simulation, as shown in Tab. 3. In regard to the initializing stage, the
SSBO requires the size of the buffer to be pre-defined before the simulation starts as well. The partial
differentiation of distance constraint function yields a Jacobian matrix (J), which is a structured sparse
matrix. Generally, dense matrix is used for storing the matrix element that contains all zeros and non-zero
elements in a 2D array structure. The general operation of dense matrix is a time-consuming operation, so
sparse matrix is used instead to optimize memory allocation and general operation. Under these
circumstances, we applied Compressed Sparse Row (CSR) format to store the Jacobian matrix and

Table 1: Spring force accumulation compute shader

Input: SSBO position, velocity, force
i ← global index of invocation axis x
j ← global index of invocation axis y
index ← j×column + i

Begin

Computeforce(current, top)

Computeforce(current, bottom)

Computeforce(current, left)

Computeforce(current, right)

Computeforce(current, top-left)

Computeforce(current, top-right)

Computeforce(current, bottom-left)

Computeforce(current, bottom-right)

Computeforce(current, top+1)

Computeforce(current, bottom+1)

Computeforce(current, left+1)

Computeforce(current, right+1)

Force[index] ← accumulate force
End

Table 2: Node update compute shader

Input: SSBO position, velocity, force, mass
i ← global index of invocation axis x

Begin

velocity[i] ← velocity[i]+ (gravity+force[i]/mass)×dt
position[i] ← position[i]+ (velocity[i]×dt)
force[i] ← vec3(0)
End
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Compressed Sparse Column (CSC) to store its transpose (JT) without additional transposing operation on
sparse matrix. While the row number of the Jacobian matrix is equal to the number of constraints and
each row of the Jacobian matrix possibility consists of six non-zero values, the SSBO size to store sparse
matrix is 6-by-constraints and the compressed row or column index is equal to constraints plus 1.

Coordinate (COO) format is used for the system matrix, since it is commonly used for storing
unstructured sparse matrix and using a simple structure of triplet (row, column, non-zero value) as
storage. The size of the system matrix is implicit, which requires pre-computing of the size to initialize
the SSBO of the COO matrix.

Multiple processes of constraint force computation are distributed into sub-process by using multiple
compute shaders. Tab. 4 shows the list of compute shader for cloth simulation using constraint
enforcement. Each compute shader uses a different number of workgroups, due to the size of data.

Table 4: List of compute shader for constraint force computation

Compute Shader Number of workgroups Number of local workgroups

disConstraint() (Constraints1;024 ,1,1) (1024,1,1)

Vect() (Nodes1;024 ,1,1) (1024,1,1)

Rhs() (Constraints1;024 ,1,1) (1024,1,1)

Spmm() (Constraints16 , Constraints
16 ,1) (16,16,1)

CG algorithm (maxðnnzÞ
1;024 ,1,1) (1024,1,1)

(Constraints1;024 ,1,1) (1024,1,1)

ConstraintForce() (Constraints1;024 ,1,1) (1024,1,1)

UpdateNodes() (Nodes1;024 ,1,1) (1024,1,1)

Table 3: List of the SSBOs used in constraint enforcement cloth simulation

SSBO Size Description

Phi Constraints Vector Φ(q, t)

Rhs Constraints Right-hand side vector of the system

Lambda Constraints Vector of λ, a Lagrange Multiplier

Vect Constraints Vector 1
Dt _qðtÞ þ M�1FAðq; tÞ� �

.

A 6×Constraints Non-zero value of J

IA Constraints+1 Compressed row index for non-zero value of J

JA 6×Constraints Non-zero value’s column indices of J

B 6×Constraints Non-zero value of JT

IB 6×Constraints Non-zero value’s row indices of JT

JB Constraints+1 Compressed column indices for non-zero value of JT

COO Constraints² System matrix

Fc 3×Nodes Array of constraint force
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disConstraint() compute shader is used to compute Φt(q, t) and construct SSBO Phi as well. At the
same time, a row of the Jacobian matrix is formulated and stored in CSR SSBO (A, IA, and JA), and the
transpose of the Jacobian matrix CSC SSBO (B, IB, and JB) by using one innovation in the compute
space of compute shader. Vect() compute shader is used to compute vector 1

Dt _qðtÞ þ M�1FAðq; tÞ� �
.

Hence, Rhs() compute shader is used to compute right-hand side of the system
( 1
Dt2 �ðq; tÞ þ 1

Dt �tðq; tÞ þ �qðq; tÞ 1
Dt _qðtÞ þ M�1FAðq; tÞ� �Þ. Consequently Rhs() compute shader

computes the result using sparse matrix–vector multiplication (SpMV) of CSR sparse matrix as shown in
Tab. 5.

System matrix computation is the most critical operation in the simulation that requires an efficient and
precise algorithm. We proposed the parallel algorithm for sparse matrix–matrix multiplication (SpMM) of
CSR format and CSC format by utilizing GPU library, such as atomic operations. Since, compute shader
processes data in parallel, an index of the new matrix element is increased by using atomic counter as
well. Each non-zero element result stores a triplet data (row, column, and non-zero value) in vector of
3 or vec3 in GLSL at the index from the atomic counter result respectively. Spmm() compute shader is
called to obtain the system matrix result. Tab. 6 shows SpMM algorithm.

In previous study, we implemented the Conjugate Gradient (CG) algorithm on GPU by using compute
shader, given sparse matrix and right-hand side vector SSBO as input in order to find the λ vector with user
defined iteration number [17]. The usage of a sparse matrix is extremely fast operating and saves much
memory compared to dense matrix. In contrast, the number of iterations used for handling the tolerance
factor of the system and the system can be converged in case the residual error is tiny enough. The
convergence of the system produces a behavior of cloth that is strongly resistant and hard to stretch.
There are three main operations of the CG algorithm, which consist of SpMV using COO sparse matrix,
AxPY vectorization operation, and vector dot product. Generally, we can use atomic operation such as
atomicAdd(), to concurrently sum SSBO data to perform parallel vector dot product. However, using an
atomic operation requires locking step of the process in GPU, which can slow down the entire algorithm,
so we consider using parallel sum reduction in shared memory using compute shader to accelerate the
algorithm.

Table 5: Rhs compute shader

Input: SSBO A, IA, JA, phi, vect
i ← global index of invocation axis x

Begin

rowStart ← IA[i]

rowEnd ← IA[i+1]
for j ←rowStart to rowEnd do:
tmp ← tmp +(A[j]×vect[JA[j]])
end for
rhs[i] ← (phi[i]/(dt×dt)) + tmp
End
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The vector dot product algorithm legitimately uses parallel sum reduction per workgroup with shared
memory to accelerate the computation. The parallel dot product of the vector can be done by passing data
of SSBO as global memory to shared memory and sum data using a stride index in the inner loop to
obtain the final result. Additional global memory has to be reserved as well, in case SSBO is larger than
the bounding size of shared memory or the maximum size of the local workgroup, since a local
workgroup can obtain only a single element result. Fig. 6 illustrates the algorithm of parallel sum
reduction on shared memory using compute shader.

Figure 6: Parallel sum reduction in shared memory

Table 6: Spmm compute shader

Input: SSBO A, IA, JA, B, IB, JB, COO
i ← global index of invocation axis x
j ← global index of invocation axis y

Begin

rowStart ← IA[i]

rowEnd ← IA[i+1]

colStart ← JB[j]

colEnd ← JB[j+1]
value ← 0
for ia ← rowStart to rowEnd do:
colIndex ← JA[ia]
for jb ← colStart to colEnd do:
rowIndex ← IB[jb]
if colIndex == rowIndex do:
value ← value + ( A[ia] ×B[jb])
end if
end for
end for
if value != 0 do:
cooindex ← atomicAdd(nnzIndex,1)
COO[cooindex] ← vec3(i,j,value)
end if
End
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Consequently, ConstraintForce() compute shader is executed to compute the force based on Eq. (7).
Steinberger [18] applied the SpMVT algorithm to multiply the transpose of matrix with vector. The
operation involved SpMV of transpose matrix using a CSR format, as shown in Tab. 7. New velocity and
position in the next frame are computed by Eqs. (8) & (9) in UpdateNodes() compute shader, as shown
in Tab. 8.

4.3 Adaptive Constraint Activation and Deactivation Method on the GPU

The adaptive constraint activation and deactivation method involves both mass–spring system and
constraint enforcement, since a spring can be compressed or stretched in each frame of the simulation,
which requires the desired force to prevent the elongation of spring. Our system initializes with the mass–
spring system, which computes the force acting on node or particle; at the same time, we compute the
length of that spring stretching or compressing. If the length reaches a threshold value (±10%), the spring
is deactivated and that spring change to an implicit constraint. Consequently, constraint force computation
is done corresponding to implicit constraint as well. Constraint force and spring force acting on the
particle are accumulated and applied, in order to update the position and velocity. Tab. 9 demonstrates the
task of cloth simulation using the adaptive constraint activation and deactivation method on the GPU.

Table 7: Compute shader for computing constraint force

Input: SSBO A, IA, JA, lambda, Fc
i ← global index of invocation axis x

Begin

rowStart ← IA[i]

rowEnd ← IA[i+1]
for j ←rowStart to rowEnd do:
value ← (A[j]×lambda[i])
atomicAdd(Fc[JA[j]],value)
end for
End

Table 8: Compute shader for update node’s position and velocity

Input: SSBO position, velocity, Fc
i ← global index of invocation axis x

Begin

fc ← vec3(Fc[i×3], Fc[i×3 + 1], Fc[i×3 + 2])

velocity[i] ← velocity[i] + (gravity-fc)×dt

position[i] ← position[i] + (velocity[i]×dt)

End
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5 Experimental Result

In this paper, the experiments were conducted on Windows platform with the following specification:
CPU i7–7700 3.60 GHz, 16 GB RAM, NVIDIA GeForce GTX 1070 8GB V-RAM and Microsoft Visual
Studio 2013 OpenGL 4.3. In order to get a fair comparison, the vertical synchronization is deactivated.

Tab. 10 compares the performance result between CPU-based and GPU-based algorithm with different
resolution of cloth object where n is the number of nodes and s is the number of springs, respectively. The
result show that the GPU-based parallel mass–spring system is on average 61 times faster than CPU-based
mass–spring system single core. Another comparison shows that the GPU-based constraint enforcement is on
average 124 times faster, which is faster than the naïve approach that is implemented on the CPU single core.
This comparison delivers significantly better results due to the GPU-based algorithm using compute shader,
which is extremely fast, and runs on thousands of threads in parallel. The algorithm implemented on CPU
consists of many loop operations in each frame of the simulation, and uses the serial process, so it causes
slower performance result, compared to the parallel processing of the GPU-based algorithm

Table 9: The task of cloth simulation using the adaptive constraint activation and deactivation method

Input: SSBO position, velocity, force

Begin

1. Compute spring force
1.1 If (spring length > 10% of rest length) or (spring length < -10% of rest length)
1.1.1 Deactivate spring
1.1.2 Generate constraints (activation constraint)

1.2 Else
1.2.1 Accumulate spring force (described in Section 4.1)

2. Constraint force computation (described in Section 4.2)
3. Deactivation constraint (activate spring)
4. Accumulate spring force and constraint force acted on each node
5. Update velocity & position

End

Table 10: CPU and GPU-based cloth simulation comparison

Mass–spring Constraint enforcement

Resolution CPU
(fps)

GPU
(fps)

Speed up
(times)

Resolution CPU
(fps)

GPU
(fps)

Speed up
(times)

n = 147,456
s= 880,898

45 2,229 50 n = 144
s= 746

32 2,787 87

n= 262,144
s= 1,567,746

26 1,436 55 n= 196
s = 1,038

17 1,890 111

n= 409,600
s= 2,451,202

16 1,008 63 n= 256
s= 1,378

10 1,280 128

n= 589,824
s= 3,531,266

11 736 67 n= 324
s= 1,766

6 861 144

n= 802,816
s= 4,807,938

8f 5 70 n= 400
s= 2,202

4 601 150

Avg.
Speed up

61 times Avg.
Speed up

124 times

438 CSSE, 2022, vol.41, no.2



We also provide the peak performance result of cloth simulation using the mass–spring method,
constraint enforcement, and adaptive constraint activation and deactivation method. Fig. 7 shows the
cloth simulation performance using mass–spring. Since constraint enforcement is stable and accurate, we
ignore the bending spring type to perform cloth simulation. However, without using bending spring type,
the linear solving part of constraint force computation requires more iterations, compared to using all
types of spring. Fig. 8 demonstrates the performance results of cloth simulation using the constraint
enforcement method with different resolution of cloth model. The number of constraints in the cloth
model that use all types of spring and only 2 types of spring are defined by s1 & s2, respectively.

In terms of performance, the mass–spring system is extremely faster than the other two methods, since it
provided real-time performance for the cloth model that has a resolution of 5,242,880 nodes and
31,434,242 springs. On the other hand, the constraint enforcement method attempts to solve complex and
large system in real-time, which requires a parallel algorithm to perform the simulation. The performance
of cloth simulation using the constraint enforcement method can handle the resolution of 2,704 nodes and
10,506 springs in real-time. Applying the adaptive constraint activation and deactivation method to the
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Figure 8: Performance results of the constraint enforcement method measured in Frames Per Second (FPS)
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simulation delivers significantly better results, compared to the constraint enforcement method. In Fig. 9, the
peak performance of cloth simulation in real-time can handle about 16,384 nodes and 97,026 springs.

In order to contrast the efficiency of each method, Fig. 10 compare behavior of the cloth model when
strong force is applied to a cloth object. The first row shows snapshots of cloth simulation using the mass–
spring system method. The second row shows snapshots of cloth simulations using the constraint
enforcement method. The third row shows snapshots of cloth simulations using our proposed method,
which applied the adaptive constraint activation and deactivation techniques.

Figure 10: Cloth simulation behavior result when the cloth receives strong force pushing from the bottom of
the cloth (time-step = 0.005)
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Figure 9: Performance results of the adaptive constraint method measured in Frames Per Second (FPS)
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A blow-up situation happened in cloth simulation using the mass–spring system with large time-step and
stiffness coefficient. Conversely, constraint enforcement is stable, and represents the behavior of cloth that is
hard to stretch and strongly resisted even strong force applied to the cloth model. Likewise, the adaptive
constraint activation and deactivation method also produced excellent behavior of the cloth model when it
receives strong force.

Fig. 11 demonstrates the different behavior of the cloth model using constraint enforcement and our
proposed approach with various time-step. The simulation results demonstrate two points. First, cloth
simulation using constraint enforcement is stable while using time-step = 0.02. So, an apparent limitation
of the method is using time-step smaller than 0.02. Second, the adaptive constraint activation and
deactivation technique consist of numerical error that cause weird behavior during simulation when using
time-step = 0.02. However, when using time-step = 0.01, the adaptive constraint method of the simulation
obtains a good result. Regarding this limitation, the cloth simulation using adaptive constraint activation
and deactivation should be applied at most time-step dt = 0.01 for better result.

6 Conclusion

In this paper, we designed and implemented cloth simulation based on the mass–spring system,
constraint enforcement method, and adaptive constraint activation and deactivation using the parallel
structure of OpenGL GLSL 4.3 compute shader as a GPU kernel program. The method of the mass–
spring system required a small integration time-step in order to achieve stable and effective behavior.
Therefore, the constraint-based method provides stable and effective control of cloth behavior, which can
be used with large integration time-step. We proposed the adaptive constraint activation and deactivation
technique to reduce the computational burden, and using GPU-based parallel processing to accelerate the
performance in real-time. Due to the usage of the parallel method of sparse linear solving (CG method),
the performance of cloth simulation using implicit constraint enforcement implemented on the GPU is
faster than CPU-based implementation by about 124 times.

There are several limitations to the proposed approach. In the constraint enforcement scheme, the
number of buffer size is pre-computed to optimize the compute space in the GPU. Since our purposed
approach utilized floating point atomic operation, which is provided by the NVIDIA GPU, different
GPUs may not run our simulation well. Similarly, the maximum size of compute space and size of shared
memory can differ, depending on the specification of the GPU.

Figure 11: Cloth simulation behavior result using the large timestep
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In future work, we will optimize the performance result of constraint enforcement by using a variety of
sparse matrix–matrix multiplication algorithms, since that is the time-consuming operation in the simulation.
In addition, we will look into different options to avoid the use of atomic operation in the simulation.
Regardless, future research could continue to explore the numbers of workgroup to increase simulation
performance as well. Furthermore, the simulation system using parallel GPU on AR/VR device can
achieve better performance without reducing levels of detail of object comparability to the method using
serial process.
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