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This paper describes a second-order numerical scheme for constrained multibody dynamics that is simple to

implement and does not require the selection of parameters for constraint satisfaction. The method is a predictor–

corrector type of method, and both the predictor and the corrector steps require solution of a symmetric positive-

definite linear system with no iteration of nonlinear equations. The basic philosophy of the method is to satisfy the

constraint equations to the same order as the discretization of the ordinary differential equations.

Nomenclature

C = coefficient in error expansion
E = total energy
Eo = initial total energy
e = vector of Euler parameters
F = applied force
f = state derivative vector
G = matrix defining relationship between Euler parameters

and angular velocities
g = gravity
h = midpoint superscript
J = inertia matrix or value
M = mass matrix
n = local truncation error exponent
O = order identifier
p = predictor superscript
Q = generalized force
q = generalized coordinate
r = center of mass coordinate
T = applied torque
t = time
x, y = center of gravity coordinates used in the planar example
a, � = Baumgarte parameters
�t = time step
"E = relative change of total energy
� = orientation angle for planar systems
� = vector of Lagrange multipliers
� = vector of holonomic constraints

�� = mean value of magnitude of constraints over simulation
duration

�q = constraint Jacobian with regard to generalized
coordinates

�r = constraint Jacobian with regard to center of mass
coordinates

�� = constraint Jacobian with regard to orientation
coordinates

� = orientation angle used in planar simulation example
� = normalization constraint for Euler parameters
! = angular velocity vector
~! = antisymmetric matrix associated with the angular

velocity

I. Introduction

T HE simulation of multibody dynamic systems has become an
important tool in the design and understanding of complex

mechanical systems. The equations describing multibody dynamic
systems may be written as a system of differential algebraic
equations (DAEs), and there is a growing body of literature directed
toward the solution of DAEs. Early techniques for solution of DAEs
differentiated the algebraic constraints, thereby reducing DAEs to a
system of ordinary differential equations (ODEs). The resulting
solutions did not satisfy the algebraic constraint equations,
motivating the stabilization method of Baumgarte [1]. Using two
arbitrary parameters, Baumgarte added stabilizing terms to the twice-
differentiated constraint equations, thus mimicking a classical
second-order system, with the response settling to a null value. It is a
testament to the value of Baumgarte’s idea that after more than three
decades, his method is still widely used. Baumgarte’s method is
easily incorporated into schemes using standard techniques for
integrating ODEs. Recent examples are Wu et al. [2], who used
Baumgarte’s stabilization technique along with a modified Adams–
Moulton predictor–corrector method, and Lin and Huang [3], who
used Baumgarte’s stabilization in their implementation of a
predictor–corrector method and in their implementation of a Runge–
Kutta method [4].

Despite the wide acceptance of Baumgarte’s stabilization, the
method is often found wanting, due to the difficulty in establishing
optimal parameters. Improper selection of the parameters may result
in artificially stiff systems or inadequate satisfaction of the
constraints. These shortcomings are often cited by authors as
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precipitating factors in the search for improved methods. Improved
stabilization methods include the methods of Park and Chiou [5] and
Ascher et al. [6]. In both cases, a single parameter, ostensibly easier to
determine than the Baumgarte parameters, is required. Parameter-
free, albeit more complicated, techniques are given by Negrut et al.
[7], who describe an implicit technique based on coordinate
partitioning that is particularly suited for solution of stiff systems,
andAghili and Piedboeuf [8], who describe a technique based upon a
projection operator. Brenan et al. [9] discuss at length the popular
backward differentiation formula methods, which are implicit
methods requiring iteration to complete a time step. Comprehensive
surveys of existing techniques for handling theDAEs associatedwith
constrainedmultibody dynamics are provided in [6] and in [7]. In this
paper, wewill present an approach that is parameter-free and is based
upon the idea of expanding the algebraic constraint at the new time
level in a Taylor series to the same order as the order of the numerical
method used to integrate the ODE system. An implicit first-order
version of this approach has been applied to planar dynamic
simulations [10] and mass-spring networks [11], and a semi-implicit
first-order version of this method has been applied to multibody
dynamics [11,12]. In this paper, wewill demonstrate the approach by
developing a second-order method for holonomically constrained
systems of rigid bodies. Extension to systems with nonholonomic
constraints is straightforward, and afirst-order version of this is given
in [12]. The advantages to this approach are simplicity and the fact
that the associated methods are parameter-free. The disadvantage to
the approach is that unlike the methods mentioned earlier, it is not
simple to obtain a modified ODE that can be cast into state-space
form and solved to arbitrary order using standard ODE packages or
methods.

II. Basic Equations

Wewill consider a set of dynamic equationswritten for a systemof
rigid bodies using the Cartesian coordinates of the mass centers for
translational variables and Euler parameters for the rotational
variables. Let � be the vector of scleronomic constraints written
using center of mass coordinates r and the Euler parameters e. Let �
be a vector containing the Lagrange multipliers and let�r and�� be
the constraint Jacobian matrices associated with r and �� the
orientation; that is, the differentiated constraint has the form

�r _r���!� 0 (1)

Note that�� is not truly a Jacobian but may be seen as the coefficient
of a virtual rotation in a differential expansion of the constraint
equation [13]. The equations of motion for this constrained system
with mass matrixM, applied force F, and inertia matrix J are written
as

M �r��T
r �� F (2)

J _!��T
��� T � ~!J! (3)

��r; e� � 0 (4)

where ~! is the skew-symmetric matrix associated with the angular
velocity:

~!�
0 �!3 !2

!3 0 �!1

�!2 !1 0

2
4

3
5 (5)

Alternatively, the equations of motion may be written using
generalized coordinates with generalized forces:

M �q��T
q��Q (6)

��q� � 0 (7)

where q� �r e�T for three-dimensional systems and q� �r ��T for
two-dimensional systems. Note thatM in Eq. (6) is not the same asM
in Eq. (2). Should the constraint be of the form ��r; e; t� � 0 (i.e.,
rheonomic), the additional terms required in our numerical treatment
are easily included (see, for example, Hong et al. [12]). For three-
dimensional problems, the kinematic relationship between the Euler
parameters and the angular velocity may be written as [13]

_e�H�e�! (8)

where

H�e� � 1

2

�e1 e0 e3 �e2
�e2 �e3 e0 e1
�e3 e2 �e1 e0

2
4

3
5 (9)

This may be written as

_e�G�!�e (10)

where

G�!� � 1

2

0 �!T
! � ~!

� �
(11)

We note also that the Euler parametersmust satisfy the normalization
constraint �:

��e� � eTe � 1� 0 (12)

This constraint is incorporated into the kinematic relationship
[Eq. (11)], but truncation and round-off errors cause the Euler
parameters to drift from their normalized state; thus, the
normalization constraint will be included in the numerical treatment
of the equations of motion. It is possible to include the normalization
constraint with the other holonomic constraints (Haug [13]), but we
will not do so here.

III. Algebraic Constraint Enforcement

The second-order method developed here will be a predictor–
corrector type of algorithm including algebraic constraint enforce-
ment. The basic philosophy of the algebraic constraint enforcement
technique is to expand the algebraic constraint function at the new
time level in a Taylor series with the base point at the previous time
level. The Taylor series expansion will be to the same order as the
discrete equations forming the numerical approximation to the
ordinary differential equations comprising the dynamic system. In
the development that follows, the applied forces F, the generalized
forces Q, and the applied moments T are considered constant.
Extension of the method to nonconstant F, Q, and T is
straightforward.

The predictor step is a first-order step, thus we discretize the
system of differential equations tofirst order (globally). For example,
Eq. (2) is discretized as

_r�t��t� � _rn ��tM�1F ��tM�1�T
r �

p �O��t2� (13)

and this may be written using the predicted variable _rpn�1 as

_r pn�1 � _rn ��tM�1F ��tM�1�T
r �

p (14)

In a similar manner, the other differential equations in the system are
discretized to the same order as

rpn�1 � rn ��t _rpn�1 (15)

!pn�1 � !n ��tJ�1T ��tJ�1 ~!nJ!n ��tJ�1�T
��

p (16)

epn�1 � en ��tG
�
!pn�1

�
epn�1 (17)
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Here and in the following text, the subscript n� 1 refers to the new
time-level approximation and the subscript n refers to the old time-
level approximation. Note that the term _rpn�1 n the right-hand side of
Eq. (15) and the termG�!pn�1�e

p
n�1 on the right-hand side of Eq. (17)

are written at new time, because the resulting implicitness comes at
little computational cost. In these equations and in all equations that
follow, terms without explicit time dependence indicated are
evaluated at old time. Note that the explicit treatment of the term
~!nJ!n results in the overall scheme being semi-implicit. We use
generalized coordinates (for notational simplicity) to write the
appropriate Taylor series expansion of the constraint equations at
new time as

��t��t� ��n ��qfq�t��t� � qng

�O
h
q�t��t� � qn

i
2 � 0 (18)

Equation (15) may be used to eliminate the new time coordinates and
quantifies the local truncation error as first order (second order
locally):

�n ��q

n
_qpn�1�t

o
�O��t�2 � 0 (19)

We note that this equation is a discretization of the ordinary

differential equation��t� ��t _��t� � 0, which may be viewed as a

stabilization of the once-differentiated constraint [ _��t� � 0] that is
known to drift. Returning to the translational and rotational variables,
we have

�n �
n
�r _r

p
n�1 ���!

p
n�1

o
�t� 0 (20)

Equations (14) and (16) may be used to eliminate _rpn�1 and !pn�1,
resulting in the symmetric positive-definite linear system that must
be solved for the Lagrange multiplier:

h
�rM

�1�T
r ���J

�1�T
�

i
�p � �

�t2
� 1

�t
��r _rn ���!n�

��rM
�1F���J

�1�T � ~!nJ!n� (21)

Once this system is solved for the Lagrangemultipliers, Eqs. (14–16)
are used to update the other variables. In this work, M and J are
assumed positive definite and the constraints are independent, thus
��r��� has full rank and the linear system ��rM

�1�T
r ���J

�1�T
��

is positive definite.
The Euler parameters obtained from Eq. (17) are normalized by

using the one-step poststabilization method of Greenwood [14] that
adjusts the Euler parameters by the increment

�e�� e
2

�

jej (22)

thus the error in the normalization constraint is eliminated. Note that
this correction does not change the direction of e in 4-space [14]. This
predictor step is the first-order scheme presented by Hong et al. [12]
and has been extended to treat nonholonomic constraints [12].

The corrector step is a second-order centered step using half-time
variables. The predicted new time variables are used to calculate
required half-time variables as follows (predictor step variables are
denoted with a superscript p):

rh � 1
2

n
rpn�1 � rn

o
(23)

eh � 1
2

n
epn�1 � en

o
(24)

!h � 1
2

n
!pn�1 � !n

o
(25)

The half-time variables are used to calculate the half-time constraint
Jacobian:

�h
r ��r�rh; eh� (26)

�h
� ����rh; eh� (27)

The half-time (or centered) constraint Jacobians are then used to form
the centered finite difference approximation to the ordinary
differential equations in the system. For example, the centered
discretization of Eq. (2) is

_r�t��t� � _rn ��tM�1�hT
r ���tM�1F�O��t3� (28)

and this may be written using the new time approximation _rn�1 as

_r n�1 � _rn ��tM�1�hT
r ���tM�1F (29)

In a similar manner, the other differential equations in the system are
discretized to the same order as

rn�1 � rn �
�t

2
� _rn�1 � _rn� (30)

!n�1 � !n ��tJ�1�hT
� ���tJ�1T ��tJ�1 ~!hJ!h (31)

en�1 � en �
�t

2
G

�
1

2
�!n�1 � !n�

�
�en�1 � en� (32)

As before, the Euler parameters obtained from Eq. (32) are
normalized.

The final step in the development of the second-order scheme is to
find an appropriate second-order expansion of the algebraic
constraint equation. We begin by expanding the constraint equation
about the predicted variables (again, generalized coordinates are
used for notational simplicity).

��t��t� ��p ��
p
qfq�t��t� � qpg �O�q�t��t� � qp�2

(33)

Becauseq�t��t� � qp �O��t2�, the expansion given byEq. (33)
is third order globally. This is one order more than is needed and in
what follows, we will write this expression using the half-time
Jacobian that appears in Eqs. (29) and (31) with a view toward
developing a symmetric positive-definite linear system to be solved
for the Lagrange multipliers. If we expand the constraint Jacobian
about the half-step we find

�
p
q ��h

q ��h
qq

�
qpn�1 � qh

�
�O

�
qpn�1 � qh

�
2

(34)

where �qq is the derivative of �q with respect to q [13]. Now
qpn�1 � qh may be expressed as

qpn�1 � qh � 1
2

�
qpn�1 � qn

�
� 1

2
�t _qpn�1 �O��t2� (35)

thus,

�
p
q ��h

q �O��t� (36)

and we may write the expansion given by Eq. (33) to second order
(globally) if we use the half-step Jacobian:

��t��t� ��p ��h
qfq�t��t� � qpg �O��t�3 (37)

This reduction of order of this expansion results in an expansion that
is still second order and, aswill be shown, the benefit is thatwe obtain
a symmetric positive-definite linear system to be solved for the
Lagrange multipliers. Next, we add and subtract the term �h

qq�t� to
Eq. (37), resulting in
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��t��t� ��p ��h
qfq�t��t� � q�t�g

��h
qfqp � q�t�g �O��t�3 (38)

The discrete kinematic equations from the predictor [Eq. (15)] and
corrector [Eq. (30)] steps are used to eliminate the bracketed terms on
the right-hand side, resulting in

��t��t� ��p ��h
q

�t

2
f _qn�1 � _qng ��h

qf�t _qpg �O��t�3

(39)

Returning to the translational and rotational variables, we rewrite
Eq. (39) as

��t��t� ��p ��t

2

n
�h
r _rn�1 ��h

�!n�1

o

��t

2

n
�h
r _rn ��h

�!n

o
��t

n
�h
r _r
p
n�1 ��h

�!
p
n�1

o
�O��t�3

(40)

The corrector momentum equations may now be used to eliminate
_rn�1 and !n�1 with the result

��t��t� ��p ��t
n
�h
r _r
p
n�1 ��h

�!
p
n�1

o

��t

2
�h
r

n
2_rn ��tM�1�hT

r ���tM�1F
o

��t

2
�h
�

n
2!n ��tJ�1�hT

� ���tJ�1T ��tJ�1 ~!hJ!h
o

�O��t�3 (41)

Equation (41) is now set equal to zero; the approximation may be
rearranged to express the symmetric positive-definite system that
must be solved for the corrected Lagrange multipliers:

h
�h
rM
�1�hT

r ��h
�J
�1�hT

�

i
�� 2�p

�t2
� 2�h

r

�t

�
_rn � _rpn�1

�

� 2�h
�

�t

�
!n � !pn�1

�
��h

rM
�1F��h

�J
�1�T � ~!hJ!h�

(42)

After solution of this system for the Lagrange multipliers, Eqs. (29–
32) are used to update the other variables. The complete second-order
scheme may be summarized in the following algorithm written for
the three-dimensional case:

Predictor step:

h
�rM

�1�T
r ���J

�1�T
�

i
�p � �

�t2
� 1

�t
��r _rn ���!n�

��rM
�1F���J

�1�T � ~!nJ!n�
_rpn�1 � _rn ��tM�1F ��tM�1�T

r �
p

rpn�1 � rn ��t_rpn�1

!pn�1 � !n ��tJ�1T ��tJ�1 ~!nJ!n ��tJ�1�T
��

p

epn�1 � en ��tG
�
!pn�1

�
epn�1

epTn�1e
p
n�1 � 1

(43a)

Corrector step:

��h
rM
�1�hT

r ��h
�J
�1�hT

� ���
2�p

�t2
� 2�h

r

�t
� _rn � _rpn�1�

� 2�h
�

�t
�!n � !pn�1� ��h

rM
�1F��h

�J
�1�T � ~!hJ!h�

_rn�1 � _rn ��tM�1�hT
r ���tM�1F

rn�1 � rn �
�t

2
� _rn�1 � _rn�

!n�1 � !n ��tJ�1�hT
� ���tJ�1T ��tJ�1 ~!hJ!h

en�1 � en �
�t

2
G

�
1

2
�!n�1 � !n�

�
�en�1 � en�

eTn�1 en�1 � 1

(43b)

The scheme may also be summarized for the two-dimensional or
generalized coordinate case without orientation parameters as
follows:

Predictor step:

h
�qM

�1�T
q

i
�p � �

�t2
� 1

�t
�q _qn ��qM

�1Q

_qpn�1 � _qn ��tM�1Q ��tM�1�T
q�

p

qpn�1 � qn ��t _qpn�1

(44a)

Corrector step:

h
�h
qM
�1�hT

q

i
�� 2�p

�t2
�

2�h
q

�t

�
_qn � _qpn�1

�
��h

qM
�1Q

_qn�1 � _qn ��tM�1�hT
q ���tM�1Q

qn�1 � qn �
�t

2
� _qn�1 � _qn�

(44b)

Note that this scheme requires solution of two symmetric positive-
definite linear systems per time step.

IV. Baumgarte Stabilization

We briefly discuss our implementation of Baumgarte’s
stabilization method to make clear the basis for our comparisons in
the following section. Baumgarte’s stabilization technique may be
used for this system in the followingway. First, the second derivative
of the constraint is stabilized by adding two terms with parameters �
and � as follows:

��� 2� _�� �2�� 0 (45)

Note that without the stabilizing terms, the constraint would drift
from zero. Making use of Eq. (4), this may be written as

�r �r��� _!� ��r _r�r _r� ���!��!� 2���r _r���!�
� �2�� 0 (46)

Use of Eqs. (2) and (3) to eliminate �r and _!, we arrive at the linear
system to be solved for the Lagrange multipliers:

n
�rM

�1�T
r ���J

�1�T
�

o
�� �2�� 2���r _r���!�

��rM
�1F���J

�1�T � ~!J!� � ��r _r�r _r� ���!��!
(47)

A first-order scheme using Baumgarte stabilization may easily be
implemented by solving Eq. (47) for the Lagrange multipliers and
then using Eqs. (14–17) and (22) to update the other variables. The
first-order predictor and this variant of a first-order Baumgarte
stabilization scheme were compared in [12]. Examination of
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Eqs. (21) and (47) indicates that the parameter selections ��
0:5�t�1 and ���t�1 would result in our first-order predictor
method and Baumgarte’s stabilization method differing by only the
last two terms in Eq. (47). Note that this parameter selection
corresponds to a classical second-order system, with damping ratio
equal to 0.5 and time constant proportional to�t.We also note that if
the final two terms in Eq. (47) are negligible, the schemes are
identical and this parameter selection forces the constraint error to be
zero (to within the order of the scheme) at the end of the time step
[this can be seen fromEq. (20)]. In a linearized stability analysis [12],
we found that the parameter selections ���t�1 and ���t�1 that
correspond to a damping coefficient of 1.0 and half the time constant
as the previous parameter selection led to instability for thefirst-order
method using Baumgarte stabilization. Using the parameter
selections ���t�1 and ���t�1 with a second-order method
using Baumgarte stabilization (described next) results in a stable
scheme. Therein lies the difficulty encountered in parameter
selection for Baumgarte’s stabilization. It is clear that the parameters
should be proportional to �t�1, but the parameter selection is
influenced by the stability characteristics and the order of themethod,
as well as by the dynamics of the system under consideration.

An attractive feature of the Baumgarte stabilization method is the
ease with which a higher-order ODE solver may be used. To
implement a typical higher-order solver, one must put the equations
of motion into a state-space form:

_r �r _! _e
� �

T � f�r; !; e; t� (48)

This is accomplished with Baumgarte stabilization as follows. First,
every invocation of the function f on the right-hand side of the state-
space form [Eq. (48)] must first solve Eq. (47) for the Lagrange
multipliers. Then Eqs. (2), (3), and (10) are used to form the state-
space form of the equations of motion:

�r�M�1
�
F ��T

r �
�

(49)

_!� J�1
�
T � ~!J! ��T

��
�

(50)

_e�G�!�e (51)

Using this approach, it is very easy to apply any of the standard
explicit higher-order ODE solvers to the dynamic system of
equations. We shall use this approach to compare a second-order
Runge-Kutta solution using Baumgarte stabilization and the second-
order algebraic constraint scheme developed in the previous section.

V. Stability and Global Error Results

In what follows, we isolate the basic scheme and analyze the
stability of the algorithm given by Eq. (44). We consider a

homogeneous linearized system with constraints given by

��q� � Bq (52)

whereB is a constant coefficient matrix and the constraint gradient is
thus

�q�q� � B (53)

The Lagrange multiplier for the predictor step must satisfy the
equation

A�p � 1

�t2
Bq�t� � 1

�t
B _q�t� (54)

where A� BM�1BT and the predicted qp and _qp are given by

_q p � _q�t� ��tM�1BT�p (55)

qp � q�t� ��t _q�t��t� (56)

The Lagrange multiplier for the corrector step must satisfy the
equation

A�� 2

�t2
Bqp � 2

�t
B� _q�t� � _qp� (57)

and the corrected q and _q are given by

_q�t��t� � _q�t� ��tM�1BT� (58)

q�t��t� � q�t� ��t

2
� _q�t��t� � _q�t�� (59)

The Lagrange multipliers and predicted variables may now be
eliminated and the resulting linearized discrete equations of motion
are

q�t��t�
_q�t��t�

� �
� X q�t�

_q�t�

� �
(60)

where

X � I �M�1BTA�1B �t�I �M�1BTA�1B�
�2
�t
M�1BTA�1B I � 2M�1BTA�1B

� �
(61)

The condition for stability of this system of equations is

��X� � 1 (62)

where��X� is the spectral radius of thematrixX. A similar resultmay
be derived for the Baumgarte method, with the result

q�t��t�
_q�t��t�

� �
��

q�t�
_q�t�

� �
(63)

where

��
I� �t

2
����2�tI� ��2�t2�� �tI � �t

2

�
�2�t2

2
� 2��t

�
�� �2�t3�2

����2�tI� ��2�t2�� I �
�
�2�t2

2
� 2��t

�
�� 2�2�t2�2

2
664

3
775 (64)

and ��M�1BTA�1B. The condition for stability for the Baumgarte
method is

���� � 1 (65)

To investigate the stability of the methods further, we consider the

1498 WELCH ET AL.



simple problem of a planar double pendulum with links of equal
length and mass. The equations of motion are written using
generalized coordinates representing the Cartesian coordinates of the
centers of mass and the rotation about the out-of-plane axis:

q� x1 y1 �1 x2 y2 �2
� �

T (66)

The configuration is described by the four constraints:

��

x1 � L
2
sin��1�

y1 � L
2
cos��1�

x2 � x1 � L
2
sin��1� � L

2
sin��2�

y2 � y1 � L
2
cos��1� � L

2
cos��2�

2
664

3
775 (67)

The system is linearized about the vertical stable equilibriumposition
and the linearized constraint equation written using perturbation
variables is

��
x1 � L

2
�1

y1
x2 � x1 � L

2
�1 � L

2
�2

y2 � y1

2
664

3
775 (68)

The linearized constraint Jacobian for this system is

B�
1 0 � L

2
0 0 0

0 1 0 0 0 0

�1 0 � L
2
�1 0 � L

2

0 1 0 0 �1 0

2
664

3
775 (69)

We consider lengths of five units andmass of one unit andfind that
��X� � 1 for all �t, thus the algebraic constraint enforcement
method is unconditionally stable. The stability behavior of
Baumgarte’s stabilization depends on the selection of the parameters
� and �. For example, if we select parameters ���t�1 and
���t�1, which give us a critically damped response with time
constant proportional to �t, we will find that the system has the
stability limit�t � 0:0664 s. This example highlights the difficulty
in parameter selection for Baumgarte’s stabilization technique.
Improper choices for the parameters � and � often result in time-step
limitations due to stability or in the time constants associated with
constraint satisfaction being too slow. One of the advantages of the
simple algebraic constraint enforcement scheme described in this
paper is that the search for a good choice of parameters need not be
undertaken. The stability analysis presented here is for the scheme
given by Eq. (44) and does not include the integration of the
orientation variables as given by Eq. (43), thus no stability result is
provided for three-dimensional problems.

We next simulate the planar double pendulum for a time period of
10.0 s to present global convergence results. Both pendulum links are
initially motionless and are oriented horizontally, with gravity in the
vertical direction. Three simulations are run using time steps such
that the higher-order truncation errors are negligible, and we may
write expressions relating the approximate values, the exact values,
and the global error as follows (written here for the constraint
function):

���exact � C�tn (70)

where � is the approximate value, �exact is the exact value, C is the
coefficient of the global error term, and n is the order of the global
error. Given three solutions at three time steps, Eq. (70) may be
solved for �exact, C, and n and the results are given in Table 1.

These results clearly indicate that for this case, the generalized
coordinates and the constraints converge to second order globally,
and the Lagrange multipliers are converging globally to slightly
better than first order.

VI. Numerical Results

Wepresent results from relatively simple examples to compare the
two second-order integration methods differing in their treatment of
constraints. For each method, the time step required to obtain a
converged result for the coordinates is the same as each method in
second order.

We begin by considering the slider-crank system considered in
[2,5]. The system is defined by the generalized coordinates

q� � � x y
� �

T (71)

the force vector

Q� 0 0 0 �mg
� �

T (72)

the mass matrix

M�

8>>><
>>>:

J1 0 0 0

0 J2 0 0

0 0 m 0

0 0 0 m

9>>>=
>>>;

(73)

and the constraint vector

Table 1 Global error results for planar double pendulum obtained using algebraic constraint enforcement

�t� 0:005 s �t� 0:0025 s �t� 0:00125 s Exact [from Eq. (70)] n

x1 2.443655269310963e0 2.442965464018156e0 2.442790656734799e0 2.442731321386402e0 1.98
y1 �5:277783191794895e � 1 �5:309612759800720e� 1 �5:317648207729833e � 1 �5:320361837114458e � 1 1.99
�1 1.783508081764363e0 1.784810820126253e0 1.785139755818101e0 1.785250865278673e0 1.99
x2 6.711359930283763e0 6.713351016578483e0 6.713852953944924e0 6.714022138581226e0 1.99
y2 �2:765194090434459e0 �2:767952427377098e0 �2:768646375692474e0 �2:768879647789623e0 1.99
�2 2.323828290259711e0 2.321853408917590e0 2.321353974979965e0 2.321184918287540e0 1.98
_x1 �1:819273871586672e � 1 �1:842799921770659e � 1 �1:848738194541881e � 1 �1:850743171218459e � 1 1.99
_y1 �8:425945695282319e � 1 �8:479370879904064e � 1 �8:492773869483450e � 1 �8:497262382156855e � 1 1.99
_�1 3:448043406049740e � 1 3:470922208260153e � 1 3:476665951459748e � 1 3:478591278120256e� 1 1.99

_x2 8.358047330329132e0 8.340866444559893e0 8.336508225248394e0 8.335026936186582e0 1.98
_y2 7.618758619232083e0 7.632854935537393e0 7.636424552087447e0 7.637635013353624e0 1.98
_�2 �5:100854444583235e0 �5:104896782794190e0 �5:105912134225290e0 �5:106252716660437e0 1.99

�1 5:764615652238092e� 1 5:868436253318767e� 1 5:913991225254942e� 1 5:949608372080202e� 1 1.19
�2 �3:734488926265648e0 �4:052234009115540e0 �4:179614438038763e0 �4:264849660744103e0 1.32
�3 4:271195102102794e� 1 4:369108931718181e� 1 4:412375487226354e� 1 4:446631447036336e� 1 1.18
�4 �2:543944405550502e1 �2:574329960311427e1 �2:586977170351205e1 �2:595994467303359e� 1 1.26
�1 2:012649042981707e � 7 2:638058038684221e � 8 3:369676981890279e � 9 �1:167900624849836e � 10 2.93
�2 �4:337343506577440e � 8 �5:727478158412680e � 9 �7:331477647198881e � 10 3:077546804530299e� 11 2.91
�3 2:580200099577823e � 6 3:347781205587097e � 7 4:257266783547209e � 8 �1:141905255467523e � 9 2.94
�4 �2:301799984172348e � 6 �2:954876792138350e � 7 �3:741255971689839e � 8 6:845405262664950e� 10 2.96
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��

8<
:
r cos��� � L1 cos��� � x
r sin��� � L1 sin��� � y
�L � L1� sin��� � y

9=
; (74)

The parameters used are L� 0:5 m, L1 � 0:3, r� 0:3, g�
10:0 ms�2, m� 1 kg, J1 � 0:045 kg 	m2, and J2 � 33=
4800 kg 	m2, and the initial conditions are the same as in [2].

q�0� � 0:9851 �0:5236 0:4256 0:1000
� �

T (75)

_q�0� � 0 0 0 0
� �

T (76)

We use this system to study accuracy and convergence properties
for the methods discussed earlier. We note that because this system
has no nonlinear terms resulting from three-dimensional orientation
dynamics, our second-order method has no time-step stability limit.
Figure 1 shows the converged (to within plotting accuracy) solutions
for the generalized coordinates over a time duration of 10 s. The time
step used to obtain this converged solution (for both methods) is
�t� 0:01 s. The Baumgarte stabilized simulations in this example
use the parameter selections ���t�1 and ���t�1, which were
found to be optimal based upon numerical experimentation.

Figure 2 shows the time variation of the magnitude of the
constraint vector for this simulation. We observe that the magnitude
of the constraint errors is comparable with the magnitude of the
constraint error for our method, being smaller on average by a factor
of 3.78 (this is shown in Table 1).

To verify the convergence properties of the methods, we consider
the magnitude of the constraint error averaged over the duration of
the simulation. We consider two simulations with time steps �t�

0:02 s and �t� 0:01 s and we note that the second time step
corresponds to the converged result shown in Fig. 1. To verify
convergence properties, we express this average magnitude of the
constraint error using the truncation error and the exact value
(theoretically equal to zero):

��� ��exact � C�tn � C�tn (77)

where �� is themagnitude of the constraint averaged over the duration

of the simulation, ��exact is the exact value (set to zero), and C is an
unknown coefficient. Equation (77) is applied to the two sets of
simulation results and the exponent n, representing the local

Fig. 1 Converged simulated generalized coordinates for the slider-crank example.

Fig. 2 Slider-crank example of log10 of j�j.
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truncation error, is obtained. Table 2 gives these results and the result
for the same calculation applied to the first-order scheme developed
earlier.

The results indicate that as expected, Baumgarte’s method
integrated with a second-order method and our method both
converge to third order locally and our first-order method converges
to second order locally. Our second-order method ismore accurate in
terms of the magnitude of the constraint error, but the solutions
obtained by bothmethodsmay be characterized as being comparable
and accurate to second order. This system is conservative and another
comparison may be made by inspecting the change in total energy
(theoretically zero). We define the relative change in total energy as

"E �
jEo � Ej
E0

(78)

Figure 3 gives this quantity and we observe that for this case,
our method is preserving energy more accurately, but just as
with the magnitude of the constraint error, the results are
comparable.

Table 2 Convergence verification results for the slider-crank

example

�t� 0:02 s �t� 0:01 s n

�� Baumgarte second order 1:0856e � 4 1:4877e � 5 2.87
�� second order 3:1960e � 5 3:9802e � 6 3.01
�� first order 1:0038e � 3 2:5339e � 4 1.99

Fig. 3 Slider-crank example of log10 of "E.

Fig. 4 Converged simulated center of gravity coordinates for the pendulum example.
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We next consider a three-dimensional, three-link pendulum, with
each link having a square cross section of dimension that is one-tenth
the link length. The three link lengths are 1.0, 2.0, and 2.5 m. The
short link is fixed to ground with a spherical joint, the second link is
fixed to thefirst linkwith a spherical joint, and the third link isfixed to
the second link with a pin joint where the axis of the pin is
perpendicular to links two and three. The resulting constraint vector
has dimension 11, and the constraint functions and associated
Jacobians are tabulated by Haug [13] and are easily programmed.
The links are originally oriented vertically (downward in the z
direction) with zero initial velocities, and the gravitational vector is
given by

g��10 1=2
			
2
p
=2 1=2

� �
T m=s2 (79)

Optimal Baumgarte parameters for this example were found to be
�� 0:5�t�1 and ���t�1, and we simulate this system for a time
duration of 10.0 s. Converged (towithin plotting accuracy) results for
the center of gravity coordinates and the angular velocities are found
for bothmethods at a time step of�t� 2:5 
 10�5 s. Figure 4 shows
the converged center of gravity coordinate, and Fig. 5 gives the
angular velocities of each link expressed in body-fixed frames. Note
that the third component of the angular velocities of links 2 and 3
should be identical, due to the pin joint, and this is reflected in Fig. 5.

Figure 6 gives the time variation of themagnitude of the constraint
vector. For this simulation, the averageBaumgartemethod constraint

error is approximately four orders of magnitude larger than the
average constraint error for our method.

As in the previous example, we investigate the convergence of the
constraint error by applying Eq. (77) to simulation results obtained
using time steps �t� 5:0 
 10�5 and �t� 2:5 
 10�5 s.

Fig. 5 Converged simulated angular velocities for the pendulum example.

Fig. 6 Pendulum example of log10 of j�j.

1502 WELCH ET AL.



The results are given in Table 3 and show that our second-order
method retained second-order accuracy, whereas the version of the
Baumgarte stabilization method used is converging only to first
order. This is likely due to the artificial time constants that the
Baumgarte stabilization method adds to the system dynamics. If we
were using an implicit method with Baumgarte stabilization, the
parameters � and � parameters could be increased in size, thus
decreasing the associated time constants, but the explicit method
used here is stability-limited and the parameters used are near the
stability limit. The interplay between the artificial time constants,
stability, and constraint satisfaction is a complication that must be
faced when using Baumgarte stabilization.

Figure 7 shows the relative change in total energy [defined by
Eq. (78)] calculated using simulation results for the twomethods. As
shown in the figure, the Baumgarte stabilized results are
approximately four orders of magnitude better than the results for
our method.

Given these mixed results, it is appropriate to say that the methods
are comparable in terms of overall accuracy. The center of gravity
coordinates and the angular velocities converge at the same time step,
and the Baumgarte method used in this work provided less accurate
constraint satisfaction but more accurate energy conservation. For
the results shown, the errors in constraint satisfaction and energy
conservation for both methods are small enough that they do not
manifest themselves through perceptible differences in the solutions
for center of gravity coordinates and angular velocities.

VII. Conclusions

A second-order integration scheme including algebraic constraint
satisfaction was developed and compared with a second-order
formulation using Baumgarte stabilization. The philosophy of the
method is to expand the constraint at the new time in aTaylor series to
the same order as the integration method used. In the simulations
presented, as well as in our experience with the methods, the results
are comparable. Generally, we get more accurate results in terms of
constraint satisfaction, but the overall results are comparable when
optimal values for the Baumgarte stabilization parameters are found.
Our method is parameter-free and the linear systems that must be
solved are symmetric and positive definite. Baumgarte stabilization

requires the user to determine two parameters. In addition, the linear
systems that must be solved are identical to the linear systems that
must be solved with our method, thus both methods require the same
computational cost. In summary, our method is parameter-free and
second order, whereas Baumgarte stabilization is flexible and easily
implemented with higher-order solvers.
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Table 3 Convergence verification results for the pendulum example

�t� 5:0 
 10�5 s �t� 2:5 
 10�5 s n

�� Baumgarte second order 1:3712e � 8 3:4275e � 9 2.00
�� second order 3:4046e � 12 4:3761e � 13 2.96

Fig. 7 Pendulum example of log10 of "E.
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