
Received 26 January 2023, accepted 10 February 2023, date of publication 14 February 2023, date of current version 23 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3245130

Real-Time Surface-Based Volume Constraints on
Mass-Spring Model in Unity3D
HONGLY VA 1, MIN-HYUNG CHOI 2, AND MIN HONG3
1Department of Software Convergence, Soonchunhyang University, Asan-si 31538, South Korea
2Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO 80217, USA
3Department of Computer Software Engineering, Soonchunhyang University, Asan-si 31538, South Korea

Corresponding author: Min Hong (mhong@sch.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant NRF-2022R1I1A3069371, in part by the Brain Korea 21 Fostering Outstanding
Universities for Research (BK21 FOUR) under Grant 5199990914048, and in part by the Soonchunhyang University Research Fund.

ABSTRACT This paper describes a parallel method to simulate real-time 3D deformable objects using
volume preservation constraints on a mass-spring model (MSM) to achieve plausible results in real-time
performance. Instead of considering a volumetric mesh which is mostly used to simulate deformable objects,
we purely take the surface of the 3D object into account to reduce the time complexity and obtain a high-
quality deformable. In the conventional MSM, we can simply control the shape of the deformable object
through the stiffness and damping coefficients which is beneficial for our volume constraint. We use the
divergence theorem and implicit constraint enforcement scheme to maintain the volume of the object and
deform it freely. The surface-based volume constraint is applied to correct the force of the spring network.
The proposed algorithm was designed on compute shader in Unity3D and runs outside the normal rendering
pipeline in the graphics processing unit (GPU) in order to utilize the massive parallel process to accelerate the
performance of the simulation. The performance of the simulation can be accelerated by using the parallel
processing method on the GPU with an average speedup factor of 4.27 using the conventional mass-spring
method, and an average speedup factor of 2.54 for the volume preservation constraint method. We present
several scenes which demonstrate the volume-preserving deformations using the conventional mass-spring
method and volume-preservation constraint method and the volume loss of deformable objects for all 3D
models is compared. The volume preservation method obtains a volume loss significantly lower than the
conventional MSM for all experimental tests.

INDEX TERMS Dynamic simulation, GPU parallel computing, implicit constraint enforcement,
mass-spring system, Unity3D, volume preservation constrain.

I. INTRODUCTION
Due to the growing demand for computer animation and
graphical modeling, real-time physically-based simulation in
computer graphics has become a significant issue. Physically-
based simulation became a quickly growing area that is
used by many interesting fields including entertainment, edu-
cation, medical science, architecture, astronomy, biology,
and more [1]. Although physically-based simulation requires
computing power to calculate and model the time-varying

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

behavior of a dynamical system in real-time. Therefore, it is
challenging to simulate and model a high-resolution model
in real-time that is measured by frames per second (fps) [2].
For example, in the film industry, 24 fps are operated, and
a game is considerable at 30 fps. However, immersive simu-
lation using virtual reality (VR) technology required higher
frames per second for keeping the immersive experience and
avoiding simulation sickness [3], [4].

Many researchers have developed many approaches over
the years to realistically model and simulate plausible soft
bodies to be used in interactive applications. Among the
previous approaches of physical simulation, there are many

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 17857

https://orcid.org/0000-0001-7264-1841
https://orcid.org/0000-0002-1327-4065
https://orcid.org/0000-0003-0026-5423

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

approaches such as the Finite Element Method (FEM), the
Finite Differences Method (FDM) and the Finite Volume
Method (FVM), and the Boundary Element Method (BEM)
trying to replicate the real-world processes and mechanics
into the graphics simulation as accurate as possible [5], [6],
[7], [8]. On the other hand, performance and controllabil-
ity are the main reasons to be considered the method for
physical simulation with plausible realism. In contrast, many
of the established method using FEM is commonly applied
to deformable object simulations due to their accuracy and
robustness. However, the computational cost is also expen-
sive which required optimization algorithms. Therefore, most
deformable object simulations can easily be implemented
using the mass-spring model (MSM), in which a 3D mesh
is discretized into the system of spring where each spring
is made by a pair of nodes or vertex in the geometry mesh
[9]. In the conventional MSM, each spring is attracted to the
other by spring force to resist the internal and external forces
in the system. Therefore, the behavior of the simulated object
depends on the network of the spring system. Unlike the most
stable and accurate method, FEM easily controls the physical
behavior by Young’s modulus and Poison ratio, while the
parameter in MSM is extremely difficult to control since the
numerical errors and instability are frequently occurring in
the explicit scheme [10]. The volumetric model such as the
tetrahedral model is used instead of a triangular surface since
the interior structures well maintain the shape and interact
as real-world objects [11]. However, the insufficient volu-
metric effects are caused by the missing volume preserva-
tion on the MSM. As the result, the volume of deformable
objects suffers from a heavy loss that can be distracting
artifacts when performing large and complex deformation.
Due to its simplicity, robustness, and speed, Position-based
Dynamic (PBD) has been introduced and applied in various
applications, especially in the entertainment industry [12].
With any type of geometry constraint solving in explicit
time integration, the PBD approach is used for soft bodies
simulation including cloth simulation, and deformable object
simulation. Distance and bending constraints are commonly
used to preserve the overall volume of the deformable object
with the algebraic constraint functions. Nonetheless, many
researchers also introduced other approaches for deformable
object simulations to obtain plausible and stable simulations
in real-time. The meshless approach such as shape matching
can simulate visually plausible and plastic deformation which
considers only the surface structure of the deformable object
[13]. Similarly, Pressure constraint based on the ideal gas
law is applied to simulate the suction cups to reproduce the
physics of suction cups of varying shapes [14].

Most physics simulations required high performance
to simulate multi-resolution of the deformable object in
real-time which can be beneficial for an immersive experi-
ence such as VR, augmented reality (AR), and mixed reality
(MR) [15], [16], [17]. Especially in VR practical applica-
tions, virtual simulation recreates an actual environment and
allows users to interact with the object. Therefore, virtual

simulation in VR impacts many trainings and education [18].
VR technologies are well suited to medical education includ-
ing treatment, rehabilitation, and especially virtual surgery
[19], [20], [21], [22], [23], [24]. The study demonstrates that
expensive on-site device can be replaced by plausible VR
images and achieves promising results. Furthermore, virtual
surgery VR-based is the most challenging process since it
required practical skills from the experts and a more realistic
virtual environment to make the process more plausible and
interactive.

Due to the limitation of hardware architecture, most
approaches implement the serial algorithm on the central pro-
cessing unit (CPU). Most games, graphic applications, and
some image processing applications strongly rely on serial
processing and mostly suffer from the time-consuming prob-
lem that needs to downscaling the dimension of the object.
Therefore, parallel computation is used instead of serial com-
putation to speed up the algorithm since the instructions are
executed simultaneously is faster than sequential processing
[25]. In terms of parallelization, there are two types of par-
allelism in processing execution [26]. Data parallelism refers
to the data distribution that is concurrently executed across
multiple processing cores for the same task regarding themul-
tiprocessor system. Additionally, synchronous computation
is performed for the general structured data such as arrays
and matrices also known as single instruction multiple data
(SIMD). Therefore, the parallel job on arrays can be done by
a single execution thread that executes the same code for the
different threads in order to control the operation. Differently,
task parallelism refers to the task distribution concurrently
perform by the specific thread in different computing proces-
sors. Furthermore, the threads can be executed on the same
or different code on the set of input data, and each thread
required communication after one is finished. It’s well suited
for the system that load balancing depends on the hardware
and scheduling algorithm [27].

Therefore, in this paper, we implemented the method for
deformable object simulation that purely uses surface triangle
mesh to represent the 3D object. Since the MSM model
is not well preserver and potentially suffers from a huge
loss of volume over time on the simulation, we employ
volume constraint to correct and preserve the volume of the
deformable object. The proposed design and implementation
of the simulation are performed on Unity3D, a well-known
game engine for VR/AR content development, 2D/3D games,
and physics simulation. In order to speed up the algorithm,
we utilize compute shader, general-purpose computing on
the graphics processing unit (GPGPU) as a GPU program to
perform the simulation using parallel computing. The specific
contributions of this paper are:

• The volume preservation constraint for a mass-
spring system to achieve a realistic and efficient
deformable object behavior without volumetric meshing
involved.

• The performance acceleration using parallel computing
in the GPU method is used to simulate the deformable

17858 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

object in real-time for large and complex 3D mesh
models.

The rest of the paper is organized as follows. Section II
provides a summary of the previous works and research on
deformable object simulations with various methods on the
different scenarios. Section III indicates the overview of the
general dynamic concepts and equations used in this paper.
Section IV presents the proposed method for designing and
implementing a force-based volume preservation constraint
method on MSM in the Unity3D engine that purely uses
a surface triangle model. In the CPU implementation, the
method is simply focused on a single-thread program in
which all computations are done in the CPU, and update
the GPU memory for rendering. Therefore, in the parallel
implementation, the algorithms are entirely computed on the
GPU kernel program in compute shader script which is a
benefit for the rendering purpose. Section V provides the
performance comparison of the proposed method with the
conventional method in various resolutions of the 3D model.
The volume error is used to measure the efficiency of each
method for the deformable object simulation for the large and
complex 3D model. Section V concludes the paper, provides
the limitation of this paper, and also potential future research.

II. RELATED WORK
Deformable body simulation is a fundamental research topic
in surgical simulation. A survey of the current state-of-the-
art deformable model for modeling and simulation of soft
tissue deformation is given in [28]. Many mechanics-based
techniques were proposed sequentially which were applied
to mesh-based and meshless approaches. FEM is a typical
mesh-based method for the simulation of soft bodies which
divide the objects into a number of elementary building com-
ponent and applies to govern differential equations to them
[29]. Due to the high computational cost, BEM simplified
the FEM complexity by numerically solving the boundary
integral equation on a surface mesh [30]. A series of recent
studies have indicated that the PBD method is widely used
in various real-time interactive graphics applications and
physics simulations. Muller et al. [12] employed PBD tech-
niques which describe the use of general constraint and the
solver for the approach that considers only position infor-
mation. In the PBD method, the velocity layer is omitted
in order to avoid the problem of explicit time integration
schemes in a force-based system. A recent study by Lee et al.
[31] proposed an internal shape-preserving constraint (ISPC)
algorithm to be integrated into PBD to maintain the 3D
deformable object while reducing the number of interior
structures in the object. The ISPC algorithm has simply
relied on the algebraic constraint function including distance,
strain, and bending constraint which potentially generates
some artifact and leads to the volume loss problem. Abu
Rumman et al. [32] have driven the further usage of the PBD
method to simulate the soft body characters by enforcing the
tetrahedral volume constraint on the volumetric mesh and
reconstructing the surface information later for rendering.

The volume constraint that only considers surface meshed
for the PBD approach was introduced by Diziol et al. [33].
This method does not require interior nodes and interior links
to simulate the object to reduce the computational burden
since the volume of a 3D object can be calculated using only
triangles information. To obtain a high-quality simulation,
they also apply the shape matching algorithms with arbitrary
triangle meshes. The PBD approach is a fast, unconditionally
stable, controllable, and effective method however, it is not
an accurate method compared to the other method such as
FEM and MSM. Another disadvantage of PBD is a time step
and iteration count independent manner which was discussed
and proposed a new method name extended PBD (XPBD).
A survey of position dynamics for real-time applications is
given in [34].

Due to the simplicity and speed, a method of mass-
spring was proposed for a real-time physic simulation [9],
[10], [35], [36]. However, the MSM only well perform for
simple deformable objects such as linked springs simula-
tion and cloth simulations. Complex and large deformable
objects such as soft biological typically suffer the problem
of heavy loss of volume since the conventional MSM cannot
completely preserve the entire volume of the object effec-
tively. Therefore the constraint projection on MSM is used
to avoid the overstretching and over-compressing problem of
the spring [37]. However, this remains a problem for gen-
eral deformable object simulation due to insufficient interior
structures.

Research by Vassilev et al. [38] is well documented, it also
acknowledged the approach to simulated real-time cloth sim-
ulation that utilizes the shape-matching technique on the
mass-spring model to allow the stable simulation with large
time steps conditions. Zang et al. [39], enforced the tetrahe-
dral volume constraint on the MSM model, which required
a volumetric model to simulate the deformable object.
Although results appear consistent, the proposed approaches
still insufficiently consider the general geometry such as
surface triangle mesh. The early research by Hong et al. [40]
was conducted for the fast volume preservation constraint for
MSM that purely consider closed triangle surface mesh to
represent the human muscles and some general deformable
bodies.

In terms of performance, the physics simulation required
higher framerates which also means the latency of each frame
in simulation has to be as low as possible. Therefore, many
studies have partitioned their method to be able to fit the con-
cept of parallelism to gain the benefit of performance accel-
eration. The previous research by Va et al. [41] proposed the
GPU-based mass-spring method for cloth simulation using
the OpenGL platform. Several researchers have also pro-
posed the parallel method for GPU computing with a remark-
able improvement compared to CPU-based approaches [42],
[43], [44]. A large number of existing studies utilized
GPGPU as the GPU program to perform the simulation,
while a method of GPGPU using shading language is still
insufficient.

VOLUME 11, 2023 17859

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

III. OVERVIEW
In this section, we will formulate the general time integration
approach for the general deformable body. We consider the
coordinate system in this paper as a Cartesian coordinate
where a point is in three-dimensional space. For performance
advantage, explicit Euler is used as a time integrationmethod.

A. ALGORITHM OVERVIEW
A deformable object composed of a set ofN nodes or vertices
and a vertex i ∈ [1, . . . ,N] has its physical property fol-
lowing the concept of particle physics [45]. Then each node
consists of:

• A position: xi ∈ R3

• A velocity: vi ∈ R3

• An acceleration: ai ∈ R3

• A Mass: mi ∈ R
In general, the deformable object is more difficult com-

pared to the normal rigid body since the deformable object
generates a different shape when the external force is given
or it contacts a collidable object. Fig. 1 demonstrates the
different shapes of a simple deformable object when using
various types of coefficients to control.

FIGURE 1. Snapshots of the simulation using different numbers of
stiffness coefficients to control the deformable bodies using volume
preservation constraint on the surface-based mass-spring system method.

1) TIME INTEGRATION
Following Newton’s second law of motion, the motion
equation of a particle with respect to the time t can

be written as follows:

ẍi(t) = v̇i(t) = ai(t) =
1
mi
fi(t) (1)

where fi is the total sum of all forces given to the particle i.
Since we only consider soft body simulations, additional
attributes such as inertia tensor, orientation, and angular
velocity are not mentioned. The goal of the dynamic simu-
lation is to find the positions at the next time step 1t . Based
on this information, the time integration for a particle-based
on explicit Euler is then performed by (2) and (3).

vi (t + 1t) = vi (t) + 1t
1
mi
fi(t) (2)

xi (t + 1t) = xi (t) + 1tvi (t + 1t) (3)

2) MASS-SPRING SYSTEM
In the general MSM for deformable object simulation, the
spring system required a complex structure to simulate vari-
ous effects like stretching, shearing, and bending. Therefore,
the different springs are used to generate different forces to
resist internal and external forces. However, in the MSM for
surface mesh, the spring is easily manipulated by the edge of
each triangle. Even though, some researchers try to generalize
the compensated edge inside each triangle to obtain plausible
behavior of simulation [46].

TheMSM consists of a set ofM springs, where each spring
is made by two pairs of nodes linked together with the initial
length of L0 as shown in Fig. 2.

FIGURE 2. A spring property in the mass-spring system.

The spring force acting on both nodes f1 and f2 can be
computed by Hooke’s law since the force is the magnitude
proportional to the increase or decrease of the length of
the spring to equilibrium. Besides the elastic force given
to the spring force, the damping force can be introduced
into the system directly to resist the motion by proportioning
the velocity of the mass point. Therefore, the spring force can
be calculated as follows:

f1 = −f 2 =

{
[ks (|x2 − x1| − L0)

+ kd

(
(v2 − v1) · (x2−x1)

|x2−x1|

)]
x2−x1
|x2−x1|

}
(4)

where the proportional constant ks is the spring constant
to control the elastic stiffness of the spring. Similarly, the
proportional constant kd is the spring constant to control
the damping of the spring. However, it easily suffers the
unstable condition when improper time-step is used for time

17860 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

integration. In another word, the mass-spring system requires
a small integration time-step to use a large stiffness coeffi-
cient efficiently and steadily. Many techniques were applied
to solve the problems by introducing the constraint on the
springwhen it stretches and compresses over a certain defined
threshold. However, most of the methods tried to move the
position directly which ignored the physical consequences of
the dynamic behavior of motion, and it can cause many fur-
ther problems whenever the collision phase involves. A con-
straint enforcement method that corrects the force magnitude
is considered instead of its discussion in [41].

3) VOLUME PRESERVATION CONSTRAINT
The major reason to use volume preservation is to accurately
model the motion of a deformable body including soft tissue,
muscle, and even large deformation object. The most con-
cerning reason for a deformable body is the incompressibility
of the object that uses compressible springs to deform freely
while maintaining the overall volume of the object. Another
purpose of volume preservation is using only the surface
mesh model since it is useful in the computer graphics area in
terms of visual quality and rendering performance. Note that
the deformable object’s surface has to be closed to provide a
complete boundary of the object. The convexity and topology
of the object are also unrestricted in the divergence theorem.

Fortunately, the volume of the surface mesh can be calcu-
lated by the divergence theorem since the triple integral over
a deformable object’s volume and a surface integral over a
deformable object’s surface is high computational costs [47].
The relationship between the integration of objects shows as
follows: ∫∫∫

V
∇ · f (x) dx =

∫∫
∂V
f (x)T n̂ (x) dx (5)

where V is the volume of the surface triangle and ∂V is the
boundary of the volume. f (x) is the vector field of the object
and n̂ is a unit normal vector of the surface triangle. By using
the identity function f (x) = x, the volume integral of the
body can be written as follows:∫∫∫

V
∇ · xdx =

∫∫
∂V
xT n̂dx = 3V (6)

Given a set of triangles in the surface model Te, where e
is the index of the triangle. Therefore, the total volume of the
object can be simply calculated by summing over the triangles
on the surface mesh.

V =
1
9

nt∑
e=1

Ae (ae+be + ce)T n̂e (7)

where nt is the number of surface triangles and Ae is the
area of the e-th triangle. The vertices position ae, be, and
ce are the form of the vertices on the t-th triangle. Then,
n̂e is the unit normal vector of the e-th triangle. In the entire
simulation time, the object’s volume must remain steady and
unchanged. Therefore, we can turn this into the constraint
dynamic system equation.

The formula of constraint Lagrange multiplier s results in
a mixed system of ordinary differential equations (ODE) and
algebraic equations. Since the particles have three transla-
tional degrees of freedom, we can write this system using
generalized coordinates in the Cartesian coordinate system
as follows.

q = [x1, y1, z1, x2, y2, z2 . . . xn, yn, zn]T (8)

In the multi-constraint dynamic system, the general formu-
lation of the constraint equation composed of m component
is formed to the algebraic constraint vector and represents

as 8 (q (t) , t) =
[
81 (q, t) , 82 (q, t) . . . 8m (q, t)

]T
, where

8i (q, t) is the individual scalar algebraic constraint. How-
ever, the volume preservation constraint for MSM is only one
to preserve the object’s volume, then the algebraic constraint
vector can be written as follows:

8 (q (t) , t) =
1
9

∑nt

e=1
Ae (ae + be + ce)T n̂e − V (0) = 0

(9)

where V (0) is the object’s volume in non-deformed states
or the original volume of the object. Fortunately, the par-
tial differentiation of the constraint function can be easily
computed and obtain a Jacobian matrix size of m × 3n.
If the triangle surface is defined with three nodes, where
(x1, y1, z1) , (x2, y2, z2) , (x3, y3, z3) are the position of three
nodes in a triangle, then the formulas for the Jacobian ∂V/∂q
are calculated as follows:

∂V
∂x1

=
1
2

(y3z2 − y2z3)
∂V
∂y1

=
1
2

(x2z3 − x3z2)

∂V
∂z1

=
1
2

(x3y2 − x2y3) (10a)

∂V
∂x2

=
1
2

(y1z3 − y3z1)
∂V
∂y2

=
1
2

(x3z1 − x1z3)

∂V
∂z1

=
1
2

(x3y2 − x2y3) (10b)

∂V
∂x3

=
1
2

(y2z1 − y1z2)
∂V
∂y3

=
1
2

(x1z2 − x2z1)

∂V
∂z3

=
1
2

(x2y1 − x1y2) (10c)

In an implicit first-order constraint enforcement scheme,
the relation between Lagrange multiplier λ and constraint
force is added into the motion equation to predict the new
appropriate position as follows:

q̇ (t + 1t) = q̇ (t) − 1tM−18T
q λ + 1tM−1f A (q, t) (11)

q (t + 1t) = q (t) + 1t q̇ (t + 1t) (12)

where M is a 3n×3n diagonal mass matrix, f A is the accu-
mulation of internal force and external forces affecting the
node. 8q is the Jacobian matrix size of m×3n, which is
made by partial differentiation of q. The constraint function
of the next time is treated implicitly and can be written as
8 (q (t + 1t) , t + 1t) = 0. We approximate the solution by

VOLUME 11, 2023 17861

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

using a truncated first-order Taylor series as follows:

8 (q (t) , t) + 8q (q (t) , t) (q (t + 1t) − q (t))

+ 8t (q (t) , t) 1t = 0 (13)

We substitute q̇ (t + 1t) from (11) into (12) and we can
eliminate the implicit generalized coordinates by substituting
the result into (13) as follows:

8q (q, t)M−18T
q λ =

1
1t2

8 (q, t) +
1
1t

8t (q, t)

+ 8q (q, t)
(

1
1t

q̇ (t) +M−1f A (q, t)
)

(14)

Since only volume preservation constraint is used, Equa-
tion (14) seizes from being a linear system problem and is
easy to be solved.

The local deformation technique is used to improve the
behavior of the volume preservation constraint because it
distributes the preserving condition or the affected region on
the surface model. As shown in (14), the volume constraint
preserves all of the triangles and nodes on the surface which
is not suitable for some materials with complex properties.
To provide a flexible technique to get a smooth transition
between global and local deformation, the weight vector is
used to localize the volume correction. The weight vector
Wi where i ∈ [1, . . . ,N] is set to every surface node.
Therefore, Wi ∈ [0, 1]allows the user to control the con-
straint terms by multiplication in the momentum equations
to scale the constraint forces. Hong et al. [40] also proposed
the weight distribution function to localize the affected area
and non-affected area on the surface smooth as the following
equation:

Wi =
1
2

[
cos

(
∥xi − c∥

r

)
+ 1

]
(15)

where c is the position of the loaded external force. r is the
radius for the affected zone or deformation zone.

B. GENERAL-PURPOSE COMPUTING ON GRAPHICS
PROCESSING UNITS (GPGPU)
In the past, the CPUwas designed as a processor that executes
the instructions from a computer program. And the CPU con-
tains all the circuitry that needs to perform basic arithmetic,
logic, controlling, and input/output (I/O) operations given by
the instructions from the computer program. Although the
design of the CPU’s architecture has changed over time, its
core functionality has remained largely unchanged including
the control unit (CU), arithmetic logic unit (ALU), and cache,
as shown in Fig. 3. Architecturally, the CPU is composed of
just a few cores with lots of cache memory that can handle a
few software threads at a time [48].

Over the past decade, a graphic processing unit (GPU)
was designed as a specialized electronic circuit to handle
the image rendering and animation on the computer display.
Due to the designing architecture of many cores processing

FIGURE 3. Comparison of CPU vs GPU architecture.

and high throughput, its potentials are beyond the rendering
purpose as shown in Fig. 3. GPU offers a way to continue
accelerating various applications such as graphic modeling
and simulation, general computing, and even artificial intel-
ligence (AI) industry by parallel the task within the thousand
of available processors [49].

The Unity3D game engine was developed by Unity Tech-
nologies. It is most well-known for game development,
specifically for VR/AR content and physical simulation. Pri-
mary scripting in the C# programming language is available
in Unity3D to control the general computation of object
movement in the physics simulation [50]. However, it exe-
cutes all operations as a serial process and can be accelerated
by using a multi-thread computing system. Even, though this
approach works well still has a limitation when dealing with
GPU rendering since the data conversation between CPU and
GPU is a bottleneck problem. In order to solve this problem,
the GPGPU is required.

GPGPU pipeline is specially designed for parallel pro-
cessing for accelerating general computation with as many
threads as available. A software type or library, such as
CUDA and OpenCL, is necessary for GPGPU to imple-
ment and design the programmable script on GPU. However,
the lightweight GPGPU such as compute shader is more
compatible with applications that do not need additional
configuration [51].

In general, the shaders are a kind of program that is respon-
sible for the rendering of graphic data. However, the compute
shader is a shader program that executes on the GPU, and it
runs outside of the normal rendering pipeline. In Unity3D,
the compute shader extends the DirectCompute technology
of Microsoft Direct3D 11 for cross-platform applications
development [52]. Additionally, the compute shader acts as
a kernel program that is defined by the specifier number
of workgroup blocks, and each workgroup block is made
up of a number of threads. There is a limit on the number
of threads allowed in a block because they are all expected
to share the same processor core. Computing blocks are
organized into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks as illustrated in Fig. 4. The
size of the data being processed usually determines howmany
total thread blocks should be included in the grid. Therefore,
all threads are executed in a non-sequential order, which
gives an advantage to the performance of the extremely large
data.

17862 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

FIGURE 4. The compute space dimension of the kernel in Unity.

IV. IMPLEMENTATION DETAILS
In this section, we present volume preservation constraint
techniques for a deformable object using a mass-spring sys-
tem that purely uses a closed triangle surface in GPU using
parallel processing.

Since the force-based method is more accurate than the
position-based dynamic, we utilize a mass-spring system
even if it causes visual implausibility when using large inte-
gration time steps [34]. Unlike, Lee et al. [31], our approach
doesn’t require any additional preserving constraints to the
system for maintaining the shape of the object. Compare our
method to Diziol et al. [33], we used only surface volume
constraint to correct the forces to avoid the implausible effect
and volume loss of the object while they also apply shape
matching method to simulate the elasticity of the objects. Our
approach is also different from the previous work where the
authors use the volume constraint to preserve the element of
the deformable object such as a tetrahedron [39], [53].

Typically, the implementation of a conventional MSM
approach is simply performed in the following steps in
Algorithm 1.

Algorithm 1 Pseudocode for the Conventional MSM
Approaches
1: Initialization: generate the elastic springs for the surface

model.
2: Loop
3: Accumulation of spring forces at mass nodes
4: Time integration of mass nodes.
5: Update the next position of the nodes.
6: End loop

As previously mentioned, the behavior of the object is
strongly dependent on the configuration of the spring net-
work. Since the simulation of a deformable object respects
the force-driven method, the calculation process is done in
the 1st step of the algorithm. The forces information for each
node is then applied to the explicit Euler integration method
in order to update the velocity and position of all nodes.

The volume preservation constraint with respect to the
force-driven method is then applied to preserve the object’s
volume in every step of the simulation. Note that, the volume
preservation constraint solving is applied after the force accu-
mulation of all nodes to correct the object’s volume through
forces information. The process of volume preservation con-
straint using the surface triangle model is given following

TABLE 1. List of GPU’s buffer for GPU-based volume preservation
constraint on MSM.

Algorithm 2. Note that the triangle information is required
to solve the volume preservation constraint.

Algorithm 2 Pseudocode for the Volume Preservation Con-
straint Method
1: Begin
2: for all triangles i do:
3: Compute Jacobian vector
4: Compute error of object’s volume
5: end loop
6: for all nodes j do:
7: Compute temporary velocity
8: Compute the right-hand side value of (14)
9: Compute the left-hand side value of (14)
10: Solve Lagrange multiplier λ

11: end loop
12: for all nodes j do:
13: Correct the accumulated force follows (11)
14: end loop
15: End

In the GPU-based implementation, there are five different
GPU buffers to store the list of data needed to compute in the
compute shader as shown in Table 1.

The data structure for Position buffers, Velocity buffers,
and Force buffers are the same since each element contains
a 3D point in space. Since a single spring is made by two
linked nodes, the data structure for the Spring buffer has
simply contained the indices of the linked node in the Position
buffer, and it also contains the initialized distance. In addition,
each cell of the Triangle buffer contains the indices of the
three vertices or nodes for performing the calculation and
visualization purposes.

In the Unity3D engine, the compute shader can be created
as a normal script and triggered the kernel program to execute
in the C# script. In a compute shader, the users can createmul-
tiple kernels in a compute shader. It also can share multiple
buffers in a certain number; however, only eight buffers in
a maximum number can be assigned to be used in a single
kernel program.

Therefore, we build only one compute shader for the
entire simulation, and we only utilize two kernels program
(ComputeSpringForce(), and UpdateNodes())to perform the
conventional mass-spring method following Algorithm 1.
Additionally, we used four different kernels program for the
volume preservation constraint solving as shown in Table 2.

VOLUME 11, 2023 17863

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

TABLE 2. List of kernel programs for volume preservation constraint on
MSM approach.

In theComputeSpringForce() kernel, we calculate the elas-
tic spring force following Hooke’s law as shown in (4). In the
previous discussion in [53] and [54] the node-centric and
spring-centric are the most consistent method for adding the
new force to the mass nodes. Each mass node adjacency is
given information in the node-centric approach. In the spring-
centric approach, each spring calculates its spring force only
once and propagates it to the mass points it linked. In terms
of parallelism, the node-centric approach outperforms the
spring- centric approach when the spring is sparsely con-
nected to the corresponding node.

Therefore, we choose the spring-centric approach to cal-
culate the spring force in parallel even if it suffers from
the problem of data racing in the writing operation. How-
ever, we use the atomic operation concept by locking the
block memory which has to be written in the current thread.
Note that Unity3D does not provide the atomic add opera-
tion for floating-point data type to the compute shader, but
the atomic compare and exchange only supports unsigned
integers. Therefore, we create a temporary buffer with the
unsigned integer as the data type to solve this problem. The
pseudocode to compute the spring force and add the force to
the linked node is given thin the Algorithm 3.

Algorithm 3 Pseudocode Spring-Centric on Compute Shader
1: Begin
2: j = global thread index
3: initialize force = (0,0,0)
4: i1, i2 = indices of nodes in Spring buffers[j]
5: force = calculate spring force Spring buffers[j]
6: Force buffer[i1] = InterlockAdd(force)
7: Force buffer[i2] = InterlockAdd(-force)
8: End

We also required an additional buffer to solve the vol-
ume preservation constraint in compute shader as shown in
Table 3. Note that Volume buffer and Lambda buffer is just
normal float-point value and they have to be read-write type.
And the Jacobian vector is made by the partial derivate with
respect to the generalized coordinate so its size is the same as

TABLE 3. List of GPU’s buffer to solve the volume preservation constraint.

the number of nodes on the surface model. Additionally, the
partial derivative on the node’s position obtains three values
for each axis (x, y, and z), so each element of the Jacobian
vector contains another three values.

In the ComputeVolume() kernel, it is the most crucial part
of the simulation since the object’s volume must be done
to compute the error between the current volume with the
volume in a non-deformed state. We follow the divergence
theorem equation to compute the object’s volume as shown in
Algorithm 4. Since the object’s surface triangles are summing
together, the Interlock() function is called to perform the
atomic add operation on the GPU.

Algorithm 4 Pseudocode of Divergence Theorem
1: Begin
2: i = global thread index
3: i1, i2, i3 = indices of nodes in Triangle buffers[i]
4: p1, p2, p3 = Position buffer[i1, i2, i3]

5: area =
(|(p2−p1)×(p3−p1)|)

2

6: tmp = area × (p1 + p2 + p3)
7: normalnormalized = (|(p2 − p1) × (p3 − p1)|)

8: volume =
(tmp·normalnormalized)

9

9: Volume buffer[0] = InterlockAdd(volume)
9: End

In line (3) of Algorithm 2, we can simply calculate the
Jacobian vector by looping through the triangle of the surface
model. However, in the GPU implementation, we cannot
apply the samemechanism to obtain the Jacobian vector since
the data racing problem occur when the thread invokes the
same buffer block to write the new Jacobian element of the
buffer. Therefore, we use the node-centric approach since
we can easily assign GPU thread per node and loop over
corresponding triangles to construct the Jacobian element by
partial derivative as shown in Algorithm 5.

In the BuildSystem() kernel, the GPU thread invokes the
Jacobian buffer, volume buffer, Velocity buffer, and Force
buffer to compute the left-hand and right-hand side of the
system in (14) to compute the Lagrangemultiplier. Therefore,
we also need a temporary buffer to store the left-hand and
right-hand as the scalar value. Next, those two temporary
buffers are used in the AccumulateForce() kernel to compute
the new force for correcting the object’s volume. Note that,
we don’t require an additional buffer to store the Lagrange
multiplier, since it is easily found by the division of the

17864 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

TABLE 4. Experimental environment.

right-hand side and left-hand side of the linear system in (14).
Each element of the Force buffer is then easily computed
since each GPU thread has access to each element of the
Jacobian vector correspondingly.

Algorithm 5 Pseudocode of Jacobian Vector Calculation
1: Begin
2: i = global thread index
3: for all triangle t affecting node i do:
4: i1, i2, i3 = indices of nodes in Triangle buffers[t]
5: p1, p2, p3 = Position buffer[i1, i2, i3]
6: if i = i1
7: Compute Jacobian respect to (10a)
8: End if
9: Else if i = i2
10: Compute Jacobian respect to (10b)
11: End if
12: Else if i = i3
13: Compute Jacobian respect to (10c)
14: End if
15: End loop
16: End

After the correcting forces at the next time-step are found,
the UpdateNodes() kernel is executed to calculate the new
velocity and position of each node. Each GPU thread is
responsible for the calculation process for each node based
on the explicit Euler method as shown in (2) and (3).

V. RESULT
A. EXPERIMENTAL ENVIRONMENT
Table 4 shows the specifications with which our experiment
was conducted on the desktop. Since the simulation was
developed on the Unity3D engine, we only target the window
PCs as the main platform for this simulation. However, it is
easy to integrate into other platforms such as mobile and even
AR/VR platforms.

B. PERFORMANCE RESULT
We used various 3D surface models to conduct a comparative
simulation with different mesh resolutions. Fig. 5 shows the
3D surface model used in this paper.

3D Sphere and Torus models were made by Blender [55],
a 3D modeling software to generate various kinds of 3D
surface objects. The rest of the 3D models were obtained by

the Stanford repository which is made by 3D scanning and
available to download [56]. Note that the 3D model is stored
in polygon file format (PLY).

We use the TetGen library to generate a closed surface tri-
angle mesh to perform the simulation since general 3D object
generally has overlapping vertices and triangles which is a
problem applying the volume preservation constraint [57].
Therefore, we only use the surface information for simulating
and rendering the 3D object. Another reason to use a 3D
modelmade by the TetGen library is that the edge information
is easily extracted to compute the spring force.

FIGURE 5. The 3D model is used in this simulation for performance
comparison.

To compare the performance of the simulation, we calcu-
late the average fps for 400 frames of the simulation single
object in a scene. The VSync Count is set to ‘‘Don’t Sync’’
in order to get a fair performance comparison for the simple
and complex objects since the default settings of Unity3D set
the VSync Count to ‘‘Every V-Blank’’ to target the framer-
ate of the animation to match with the monitor’s framerate.
As mentioned in Table 2, the grid size for the local workgroup
of thread is set to 1,024 for each GPU kernel since it is
the maximum size for the one-dimension of workgroup size
in HLSL’s compute shader. Fig. 6 shows the performance

VOLUME 11, 2023 17865

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

comparison between CPU-based implementation and GPU-
based implementation methods. Where MSM refers to the
mass-spring model on a surface triangle model, VPC refers
to the volume preservation constraint on the MSM. The the
computational complexity of our approach is represented by
the GPU VPC bar graph and measured in fps. Although our
simulation method can handle large time steps, we run all
simulations with a fixed time step size of 0.0001 to ensure
the stability of the simulation.

FIGURE 6. Performance comparison of deformable object simulation
using CPU-based and GPU-based approaches.

As the expectation, the performance of the simulation can
be accelerated by using the parallel processing method on the
GPU with an average speedup factor of 4.27 using the MSM
method, and an average speedup factor of 2.54 for volume
preservation constraint. In the CPU-based MSM, it can only
simulate Stanford’s armadillo model in real-time. Due to the
simple calculation of spring force using spring centricmethod
in the GPU kernel, the GPU-based MSM achieves real-time
performance for all cases. The MSM method for deformable
object simulation is a fast method but problematic. The
surface-based volume preservation constraint is used to cor-
rect the object’s volume through the internal force of the
surface’s nodes. Only one volume constraint is enforced on
the MSM, and it can simulate Stanford’s bunny in real-time
using a CPU-based approach with an average framerate of
44.23 fps. When the mesh’s resolution is increased, it only
achieves 28.19fps and 9.42fps for the Stanford armadillo
and dragon models, respectively. However, the GPU-based
method improves the performance of volume constraint solv-
ing to be able to perform the simulation of the Stanford
armadillo and dragon in real-time with an average framerate
of 54.5fps and 39.39fps, respectively.

Compare the performance result to previous works where
most GPU-based implementations, used CUDA, therefore
our performance can be performed with the mesh with a
maximum resolution of 31K nodes and about 20K triangles.
While the state of art methods such as PBD can be used to
simulate higher resolutionmesh up to 32K nodes for real-time
simulation [33]. However, Lee et al. [31], implement the PBD
method on a unity3D engine using compute shader using
only distance, bending, and strain constraint. The real-time

performance (≥ 30 fps) can handle about 6K vertices and
19K constraints.

Additionally, the GPU-based volume preservation con-
straint is not as fast as conventional MSM in the GPU scheme
because of the usage of locking processing when doing the
concurrent sum to calculate the object’s volume every frame
of the simulation. The usage of concurrent sum in parallel
to compute an object’s volume using atomic operation is a
bottleneck since the atomic slows down the calling thread and
locks the accessed buffer element from another thread.

Even though the performance of volume preservation con-
straint on the MSM approach is slower than conventional
MSM, it can preserve the object’s volume more correctly.
As shown in Fig. 1, we use different stiffness propor-
tional constants to control the stiffness of the deformable
object that purely taking surface mesh into account, the 3D
sphere model with the stiffness coefficient of 100, 1000, and
5000 obtains maximum volume loss of 3.67%, 2.69%, and
1.56%, respectively. Similarly, the 3D torus model with the
stiffness coefficient of 100, 1000, and 5000 obtains maximum
volume loss of 11.71%, 9.51%, and 7.12%, respectively.

Extensive results carried out show that the volume preser-
vation constraint improves the result of deformable object
simulation by using a suitable stiffness coefficient. Therefore,
we conduct another comparison of deformable object simu-
lation where the stiffness and damping coefficient was set to
5000 and 200, respectively. Fig. 7 has shown the maximum
percentage of volume loss for the object using MSM with
only surface spring, and volume preservation constraint on
(VPC) MSM.

FIGURE 7. The maximum loss of free-fall simulation.

We captured the error of volume percentage for all exper-
imental models in a free fall with a simple flat surface as
a collider. The result reveals significant differences in vol-
ume error. For all experimental models using only the MSM
approach, the maximum loss on average is 95.35% which
also means that almost the entire object’s volume cannot
be well-preserved and does not remain the same as the ini-
tialized state. We also calculated the average volume error
for 400 frames of the simulation using the experimental 3D
models with conventional MSM and the proposed approach
as shown in Fig. 8.

17866 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

Overall, the proposed approach of volume preserva-
tion constraint delivers sophisticated results with significant
improvement for the loss of the deformable object’s volume.
The volume preservation constraint approaches are success-
fully applied to improve the stability of the mass-spring
system for the large and complex model of the deformable
object. We also prove that the usage of parallel processing
in GPU is way faster than the naïve approach that used
serial processing in GPU. Fig. 9 shows the snapshots of the
simulation we conducted.

FIGURE 8. The average loss of volume preservation for the three
methods.

FIGURE 9. Snapshots of the simulation using the MSM (red color), and
volume preservation on the MSM (blue color).

To confirm the efficiency of our proposed method, the
experimental test of pressing two flat objects with the
deformable object was conducted. The transparent object is
moving to press the deformable objects to the ground. Fig. 10
shows the motion comparison of the Stanford bunny model
and Stanford armadillo model using the conventional mass-
spring method and our proposed method. In this experiment,

the spring’s stiffness and spring damping are set to 1000 and
200, respectively.

FIGURE 10. Comparison of objects when heavy pressure is applied to
deformable objects using the MSM (red), and our proposed method
(blue).

As a result of the experimental test, we recorded the vol-
ume of the deformable object for 600 frames, the maximum
volume loss of Stanford bunny and armadillo using MSM are
79.84% and 80.35%, respectively. However, the maximum
volume loss of Stanford bunny and armadillo using our pro-
posed approach is only 0.33% and 0.97%, respectively. It was
clear that the volume preservation constraint approach well
maintained the object volume and only consider the surface
mesh as a volume constraint. The performance of the heavy
pressure applied to the bunny models and armadillo model
are 37.31fps and 18.59fps, respectively.

Another experimental test of volume preservation was also
conducted. We used a cube (386 vertices, 768 triangles, and
1,777 springs) and performed the twisting behavior on its
top side while the bottom side is set to be fixed. In this
experimental test, we mimic the internal spring to improve
the behavior of the volume constraint.

FIGURE 11. Snapshot of the cube twisting simulation using the MSM (top
row) and volume preservation constraint on the MSM (bottom row).

As a cube twisting test, the spring’s stiffness is set to
1000 and the damping force of the spring is eliminated.

VOLUME 11, 2023 17867

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

Therefore, the cube twisting using the conventional MSM
obtains the maximum of volume loss 20.37% of the total
volume. Alternatively, when using our approach for cube
twisting, the maximum volume loss is only 0.02%. The per-
formance of cube twisting using MSM, and volume preser-
vation constraints are 125.17fps and 123.69fps, respectively.
Note that we calculate the torque force and applied to the
affected node on the top side of the cube.

VI. CONCLUSION
We proposed a method to design and implement the simu-
lation of the deformable object that purely considers only
surface mesh based on a conventional mass-spring system
and applied the volume preservation constraint to improve
the volume preservation in the Unity3D environment. The
simulation is specifically implemented on the GPU-based
approach in order to accelerate the performance compared to
the simple CPU-based approach.

Comparing the GPU-based to CPU-basedMSM, we obtain
an average speedup of factor 4.27. Likewise, the average
speedup of factor 2.53 is achieved for GPU-based accel-
eration using volume preservation constraint on the MSM.
Even though the volume preservation constraint method is not
as fast as the conventional mass-spring method, the volume
preservation result is much more accurate in terms of volume
loss during the simulation. In the free-fall experiment, the
maximum volume loss of the deformable body is an average
of 95.35 for the conventional MSM which is much higher
than the volume preservation constraint that only achieves the
maximumvolume loss of 5.61% on average. Furthermore, the
pressing experimental test and cube twisting test also achieve
a similar result which is the volume preservation constraint is
well maintained in the deformable object’s volume.

However, the use of atomic operation is the main bottle-
neck of the entire operation in a simulation, even though we
use it to perform concurrent sum in the GPU to compute
the object’s volume. Many optimization algorithms such as
reduction and graph coloring have been introduced which
required further study in order to apply in our GPU-based
algorithm. Another limitation is that the plausible elastic and
plastic deformation can be performed by our volume preser-
vation constraint method under the circumstance in which
shape matching is applied to keep the detail of the mesh
during the simulation asmentioned in [33]. Presently, we only
explore the built-in features in the Unity engine in order to
implement our simulation. Our method can be implemented
on other engines as well but additional libraries might be
required for GPU computing and rendering purposes.

In future work, we will explore the possibility of imple-
menting our proposed method on another engine as well.
Additionally, we will apply collision detection to our
GPU-based simulation since the current study only focuses
on CPU-based which required read-write data from the GPU
which is time-consuming. We will focus on the complex 3D
biological model in order to perform the virtual cutting in
real-time.

REFERENCES
[1] A.Wirtz, M.Meißner, P.Wiederkehr, D. Biermann, and J. Myrzik, ‘‘Evalu-

ation of cutting processes using geometric physically-based process simu-
lations in view of the electric power consumption of machine tools,’’ Proc.
CIRP, vol. 79, pp. 602–607, Jan. 2019.

[2] O. Robert, P. Iztok, and B. Borut, ‘‘Real-time manufacturing optimiza-
tion with a simulation model and virtual reality,’’ Proc. Manuf., vol. 38,
pp. 1103–1110, Jan. 2019.

[3] Y. Ryu and E. Ryu, ‘‘Overview of motion-to-photon latency reduction for
mitigating VR sickness,’’ KSII Trans. Internet Inf. Syst., vol. 15, no. 7,
pp. 2531–2546, 2021.

[4] S. Saeed and U. Park, ‘‘A study on presence quality and cybersickness in
2D, smartphone, and VR,’’ KSII Trans. Internet Inf. Syst., vol. 16, no. 7,
pp. 2305–2327, 2022.

[5] W.K. Liu, S. Li, andH. S. Park, ‘‘Eighty years of the finite elementmethod:
Birth, evolution, and future,’’ Arch. Comput. Methods Eng., vol. 29, no. 6,
pp. 4431–4453, Oct. 2022.

[6] B. E. Griffith and X. Luo, ‘‘Hybrid finite difference/finite element
immersed boundary method,’’ Int. J. for Numer. Methods Biomed. Eng.,
vol. 33, no. 12, Dec. 2017.

[7] L. Van Hoecke, D. Boeye, A. Gonzalez-Quiroga, G. S. Patience, and
P. Perreault, ‘‘Experimental methods in chemical engineering: Computa-
tional fluid dynamics/finite volume method—CFD/FVM,’’ Can. J. Chem.
Eng., vol. 101, no. 2, pp. 545–561, Feb. 2023.

[8] L. Najarzadeh, B. Movahedian, and M. Azhari, ‘‘Numerical solution of
scalar wave equation by the modified radial integration boundary element
method,’’ Eng. Anal. with Boundary Elements, vol. 105, pp. 267–278,
Aug. 2019.

[9] X. Zhang, J. Duan, W. Sun, T. Xu, and S. K. Jha, ‘‘A three-stage cutting
simulation system based on mass-spring model,’’ Comput. Model. Eng.
Sci., vol. 127, no. 1, pp. 117–133, 2021.

[10] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, ‘‘Fast simulation
of mass-spring systems,’’ ACM Trans. Graph., vol. 32, no. 6, pp. 1–7,
Nov. 2013.

[11] W. Zhang, Y. Ma, J. Zheng, and W. J. Allen, ‘‘Tetrahedral mesh defor-
mation with positional constraints,’’ Comput. Aided Geometric Design,
vol. 81, Aug. 2020, Art. no. 101909.

[12] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, ‘‘Position based
dynamics,’’ J. Vis. Commun. Image Represent., vol. 18, pp. 109–118,
Apr. 2007.

[13] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, ‘‘Meshless defor-
mations based on shape matching,’’ ACM Trans. Graph., vol. 24, no. 3,
pp. 471–478, Jul. 2005.

[14] A. Bernardin, E. Coevoet, P. Kry, S. Andrews, C. Duriez, and M. Marchal,
‘‘Constraint-based simulation of passive suction cups,’’ ACM Trans.
Graph., vol. 42, no. 1, pp. 1–14, Sep. 2022.

[15] M. Sung and H. Choi, ‘‘Real-time augmented reality physics simulator for
education,’’ Appl. Sci., vol. 9, no. 19, p. 4019, Sep. 2019.

[16] K. Kounlaxay, Y. Shim, S. Kang, H. Kwak, and S. K. Kim, ‘‘Learning
media on mathematical education based on augmented reality,’’ KSII
Trans. Internet Inf. Syst., vol. 15, no. 3, pp. 1015–1029, 2021.

[17] G. ZhaoZhe, L. XiaoDong, S. XiaoYing, L. Geng, and C. Bin, ‘‘Research
of 3D image processing of VR technology in medicine based on DNN,’’
KSII Trans. Internet Inf. Syst., vol. 16, no. 5, pp. 1584–1596, 2022.

[18] Z. Feng, V. A. González, R. Amor, R. Lovreglio, and G. Cabrera-Guerrero,
‘‘Immersive virtual reality serious games for evacuation training and
research: A systematic literature review,’’ Comput. Educ., vol. 127,
pp. 252–266, Dec. 2018.

[19] T. Baniasadi, S. M. Ayyoubzadeh, and N. Mohammadzadeh, ‘‘Challenges
and practical considerations in applying virtual reality inmedical education
and treatment,’’ Oman Med. J., vol. 35, no. 3, pp. e125–e125, May 2020.

[20] M.-S. Bracq, E.Michinov, and P. Jannin, ‘‘Virtual reality simulation in non-
technical skills training for healthcare professionals: A systematic review,’’
Simul. Healthcare: J. Soc. Simul. Healthcare, vol. 14, no. 3, pp. 188–194,
2019.

[21] S. Lee, M. Hong, S. Kim, and S. J. Choi, ‘‘Effect analysis of virtual-reality
vestibular rehabilitation based on eye-tracking,’’ KSII Trans. Internet Inf.
Syst., vol. 14, no. 2, pp. 826–840, 2020.

[22] S. G. Han, Y. D. Kim, T. Y. Kong, and J. Cho, ‘‘Virtual reality-based neu-
rological examination teaching tool(VRNET) versus standardized patient
in teaching neurological examinations for the medical students: A ran-
domized, single-blind study,’’ BMC Med. Educ., vol. 21, no. 1, p. 493,
Dec. 2021.

17868 VOLUME 11, 2023

H. Va et al.: Real-Time Surface-Based Volume Constraints on Mass-Spring Model in Unity3D

[23] S. Lee, M. Hong, H. Va, and J.-Y. Park, ‘‘Implementation of a subjective
visual vertical and horizontal testing system using virtual reality,’’ Com-
put., Mater. Continua, vol. 67, no. 3, pp. 3669–3679, 2021.

[24] J.Ma, H.-J. Kim, J.-S. Kim, E.-S. Lee, andM. Hong, ‘‘Virtual reality-based
random dot kinematogram,’’ Comput., Mater. Continua, vol. 68, no. 3,
pp. 4205–4213, 2021.

[25] H. Wang, H. Peng, Y. Chang, and D. Liang, ‘‘A survey of GPU-based
acceleration techniques inMRI reconstructions,’’Quant. Imag.Med. Surg.,
vol. 8, no. 2, pp. 196–208, Mar. 2018.

[26] F. M. Madsen and A. Filinski, ‘‘Streaming nested data parallelism on mul-
ticores,’’ in Proc. 5th Int. Workshop Funct. High-Performance Comput.,
Nara, Japan, Sep. 2016, pp. 44–51.

[27] X. Wang, Y. Qiu, S. R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu,
M. Tang, D. Manocha, and C. Jiang, ‘‘A massively parallel and scalable
multi-GPU material point method,’’ ACM Trans. Graph., vol. 39, no. 4,
p. 30, Aug. 2020.

[28] J. Zhang, Y. Zhong, and C. Gu, ‘‘Deformable models for surgical simula-
tion: A survey,’’ IEEE Rev. Biomed. Eng., vol. 11, pp. 143–164, 2018.

[29] M. Freutel, H. Schmidt, L. Dürselen, A. Ignatius, and F. Galbusera, ‘‘Finite
element modeling of soft tissues: Material models, tissue interaction and
challenges,’’ Clin. Biomechanics, vol. 29, no. 4, pp. 363–372, Apr. 2014.

[30] B. Zhu and L. Gu, ‘‘A hybrid deformable model for real-time surgical sim-
ulation,’’ Computerized Med. Imag. Graph., vol. 36, no. 5, pp. 356–365,
Jul. 2012.

[31] D.-K. Lee, T.-W. Kim, Y.-J. Choi, and M. Hong, ‘‘Volumetric object
modeling using internal shape preserving constraint in unity 3D,’’ Intell.
Autom. Soft Comput., vol. 32, no. 3, pp. 1541–1556, 2022.

[32] N. Abu Rumman and M. Fratarcangeli, ‘‘Position-based skinning for
soft articulated characters,’’ Comput. Graph. Forum, vol. 34, no. 6,
pp. 240–250, Sep. 2015.

[33] R. Diziol, J. Bender, and D. Bayer, ‘‘Robust real-time deformation of
incompressible surface meshes,’’ in Proc. ACM SIGGRAPH/Eurographics
Symp. Comput. Animation, Vancouver, BC, Canada, Aug. 2011,
pp. 237–246.

[34] J. Bender, M. Müller, and M. Macklin, ‘‘A survey on position based
dynamics,’’ in Proc. Eur. Assoc. Comput. Graphics, Tuts., Lyon, France,
2017, pp. 1–31.

[35] Y. Duan, W. Huang, H. Chang, W. Chen, J. Zhou, S. K. Teo, Y. Su,
C. K. Chui, and S. Chang, ‘‘Volume preserved mass–spring model with
novel constraints for soft tissue deformation,’’ IEEE J. Biomed. Health
Informat., vol. 20, no. 1, pp. 268–280, Jan. 2016.

[36] P. M. Pieczywek and A. Zdunek, ‘‘Compression simulations of plant tissue
in 3D using mass–spring system approach and discrete element method,’’
Soft Matter, vol. 13, no. 40, pp. 7313–7331, 2017.

[37] R. Durikovic and E. Siebenstich, ‘‘A mass spring model for string simu-
lation with stress-strain handling,’’ in Proc. 6th Int. Symp. Comput. Netw.
Workshops (CANDARW), Takayama, Japan, Nov. 2018, pp. 8–14.

[38] T. I. Vassilev, ‘‘Mass-spring cloth simulation with shape matching,’’ in
Proc. 18th Int. Conf. Comput. Syst. Technol., Ruse, Bulgaria, Jun. 2017,
pp. 257–264.

[39] X. Zhang, H. Wu,W. Sun, and C. Yuan, ‘‘An optimized mass-spring model
with shape restoration ability based on volume conservation,’’ KSII Trans.
Internet Inf. Syst., vol. 14, no. 4, pp. 1738–1756, 2020.

[40] M. Hong, S. Jung, M.-H. Choi, and S. W. J. Welch, ‘‘Fast volume preserva-
tion for a mass-spring system,’’ IEEE Comput. Graph. Appl., vol. 26, no. 5,
pp. 83–91, Sep. 2006.

[41] H. Va,M.-H. Choi, andM. Hong, ‘‘Parallel cloth simulation using OpenGL
shading language,’’ Comput. Syst. Sci. Eng., vol. 41, no. 2, pp. 427–443,
2022.

[42] Z. Zhang, ‘‘Soft-body simulation with CUDA based on mass-spring model
and verlet integration scheme,’’ in Proc. ASME Int. Mech. Eng. Congr.
Expo., vol. 7A, Nov. 2020, pp. 1–9.

[43] M. Hong, J.-H. Jeon, H.-S. Yum, and S.-H. Lee, ‘‘Plausible mass-spring
system using parallel computing on mobile devices,’’ Human-Centric
Comput. Inf. Sci., vol. 6, no. 1, pp. 1–11, Dec. 2016.

[44] M. Kim, N.-J. Sung, S.-J. Kim, Y.-J. Choi, and M. Hong, ‘‘Parallel cloth
simulation with effective collision detection for interactive AR applica-
tion,’’Multimedia Tools Appl., vol. 78, no. 4, pp. 4851–4868, Feb. 2018.

[45] M. M. Bhatti, M. Marin, A. Zeeshan, and S. I. Abdelsalam, ‘‘Editorial:
Recent trends in computational fluid dynamics,’’ Frontiers Phys., vol. 8,
p. 4, Oct. 2020.

[46] J.-H. Zhu, Y. Li, W.-H. Zhang, and J. Hou, ‘‘Shape preserving design with
structural topology optimization,’’ Structural Multidisciplinary Optim.,
vol. 53, no. 4, pp. 893–906, Apr. 2016.

[47] T. Lu, B. Chen, Z. Zou, and D. Wang, ‘‘Hybrid method of FEM and diver-
gence theorem to analyze ion flow field including dielectric film’s accu-
mulation charges,’’ IEEE Trans. Magn., vol. 57, no. 6, pp. 1–4, Jun. 2021.

[48] M. Forsell, S. Nikula, J. Roivainen, V. Leppänen, and J. L. Träff, ‘‘Perfor-
mance and programmability comparison of the thick control flow archi-
tecture and current multicore processors,’’ J. Supercomput., vol. 78, no. 3,
pp. 3152–3183, Feb. 2021.

[49] C. Deng, X. Fang, X. Wang, and K. Law, ‘‘Software orchestrated and
hardware accelerated artificial intelligence: Toward low latency edge com-
puting,’’ IEEE Wireless Commun., vol. 29, no. 4, pp. 110–117, Aug. 2022.

[50] Unity Real-Time Development Platform. Accessed: Oct. 12, 2022.
[Online]. Available: https://unity.com/

[51] H. Va, M.-H. Choi, and M. Hong, ‘‘Real-time cloth simulation using
compute shader in Unity3D for AR/VR contents,’’ Appl. Sci., vol. 11,
no. 17, p. 8255, Sep. 2021.

[52] Compute Shaders-Unity. Accessed: Oct. 12, 2022. [Online]. Available:
https://docs.unity3d.com/Manual/class-ComputeShader.html

[53] H. Va, M.-H. Choi, and M. Hong, ‘‘Real-time volume preserving con-
straints for volumetric model on GPU,’’Comput., Mater. Continua, vol. 73,
no. 1, pp. 831–848, 2022.

[54] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, ‘‘Unified particle
physics for real-time applications,’’ ACM Trans. Graph., vol. 33, no. 4,
pp. 1–12, Jul. 2014.

[55] Blender. Accessed: Oct. 12, 2022. [Online]. Available:
https://www.blender.org/

[56] M. Levoy, J. Gerth, B. Curless, and K. Pull. The Stanford 3D Scanning
Repository. Accessed: Oct. 12, 2022. [Online]. Available: http://www-
graphics.stanford.edu/data/3Dscanrep/

[57] H. Si, ‘‘TetGen, a Delaunay-based quality tetrahedral mesh generator,’’
ACM Trans. Math. Softw., vol. 41, no. 2, pp. 1–36, Jan. 2015.

HONGLY VA received the B.E. degree in informa-
tion technology engineering from the Royal Uni-
versity of Phnom Penh, in 2019. He is currently
pursuing the Ph.D. degree with the Department
of Software Convergence, Soonchunhyang Uni-
versity, Asan-si, Republic of Korea. His research
interests include computer graphics, virtual real-
ity, parallel computing, physically-based model-
ing, and simulation.

MIN-HYUNG CHOI received the M.S. and Ph.D.
degrees from the University of Iowa, in 1996 and
1999, respectively. Currently, he is a Professor
in computer science and the Director of the
Computer Graphics and VR Laboratory, Univer-
sity of Colorado Denver. His research interests
include computer graphics, physically-based mod-
eling and simulation, scientific visualization, and
human–computer interaction in VR.

MIN HONG received the B.S. degree in
computer science from Soonchunhyang Uni-
versity, Asan-si, Republic of Korea, in 1995,
and the M.S. degree in computer science and
the Ph.D. degree in bioinformatics from the
University of Colorado, in 2001 and 2005,
respectively. He is currently a Professor with the
Department of Computer Software Engineering,
Soonchunhyang University. His research interests
include computer graphics, mobile computing,
physically-based modeling, and simulation.

VOLUME 11, 2023 17869

