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ABSTRACT

Respiration monitoring is an important physiological measurement
taken to determine the health of an individual. In clinical sleep
studies, respiration activity is monitored to detect sleep disorders
such as sleep apnea and respiratory conditions such as Chronic
Obstructive Pulmonary Disease (COPD). Existing methods of res-
piration monitoring either place sensors on the patient’s body,
causing discomfort to the patient, or monitor respiration remotely
with lower accuracy. We present a method of respiratory analysis
that is non-contact, but also measures the exhaled air of a human
subject directly through a medium-based exhale visualization tech-
nique. In this method, we place a thin medium perpendicular to the
exhaled airflow of an individual, and use a thermal camera to record
the heat signature from the exhaled breath on the opposite side
of the material. Respiratory behaviors are extracted from the ther-
mal data in real time using Python. Our prototype is an embedded,
low-power device that performs image and signal processing in real-
time with Python, making use of powerful existing Python modules
for scientific computing and visualization. Our proposed respiration
monitoring technique accurately reports breathing rate, and may
provide other metrics not obtainable through other non-contact
methods. This method can be useful for medical applications where
long-term respiratory analysis is necessary, and for applications
that require additional information about breathing behavior.
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1 INTRODUCTION

Respiration rate is an important indicator of an individual’s health
that can be comfortably monitored over time. Abnormal respira-
tion rates can indicate serious medical problems in a patient. In
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overnight studies, this vital sign is monitored to detect and diag-
nose sleep disorders such as sleep apnea, a potentially fatal medical
condition where the patient may stop breathing for sort periods of
time. Several methods of long-term respiration monitoring are used
in clinical sleep studies [5], and are generally categorized as either
contact or non-contact. Contact respiration monitoring involves
placing sensors on the patient’s body to measure breathing rate.
Common methods include placing ECG electrodes on the patient’s
body [9], putting thermistors in the patient’s nose [12], and having
the patient wear an abdominal strain-gauge transducer [10]. These
methods measure breathing rate directly and have a high rate of
accuracy. However, contact methods are uncomfortable, and alter
the natural breathing of the patient. For this reason, several non-
contact methods of respiration monitoring have been proposed.
These methods strive to preserve natural breathing by measuring
respiration remotely, using sensors such as cameras [13] [1] [7] [17],
volumetric sensing [14], microphones [11], and radar [8]. These
methods improve patient comfort, but are often subject to envi-
ronmental conditions, extraneous movement, or variability in the
physical traits of the patient.

In this paper, we propose a novel non-contact respiration moni-
toring system that monitors a patient’s breathing patterns in real-
time. To monitor respiratory behavior, we place a thin medium
perpendicular to the exhaled airflow of the individual and record
the thermal signature on the medium with a thermal camera, and
then use Python to process the thermal data and display the ex-
tracted information. Our current prototype provides a graphical
user interface that processes thermal images from a low-cost ther-
mal camera and displays the respiration rate in breaths per minute
(BPM). This software has been tested on a Raspberry Pi (3) to show
that our solution is capable of processing this data in real-time on
low-power compute-bound hardware. We aim to develop a medical
device for real-time respiration monitoring using a Raspberry Pi
and an affordable thermal camera for in-clinic use.

Our proposed method of respiration monitoring combines the
strengths of contact and non-contact techniques by measuring
respiration both directly and remotely. This results in higher mea-
surement accuracies, but without the cost of causing discomfort or
distress to the patient. This method also has the potential to provide
other metrics not obtainable through other respiration monitoring
methods, such as breathing strength, nose to mouth distribution,
and tidal volume estimates. Nose to mouth distribution behavior is
a metric difficult to obtain from non-contact methods, and because
nasal obstruction is known to increase the risk of sleep-disordered
breathing problems, this measurement is highly valuable in a wide
array of respiratory and sleep related studies.
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Figure 1: The image sequence above illustrates the recorded thermal projection of the patient's breath during one complete
exhale. The images 1 - 6 (top-row) illustrate the increasing heat distribution due to the exhale projected onto the surface of the
medium and images 7-12 (bottom row) illustrate the dissipation of the exhale heat. This result is based on the thermal material
properties of the selected medium, the exhale strength, and thermal signature transfered from the exhale to the medium.

2 RELATED WORK

Numerous contact and several non-contact respiration monitoring
methods have been proposed. Common non-contact methods that
use normal cameras to extract the up-and-down movement of the
patient’s chest [13] have been widely studied. This method is simple
to implement and low-cost, but the respiration signal is degraded
whenever the patient moves and is highly subject to posture. A
similar method that aims to address these problems uses facial
tracking to infer the location of the patient’s abdomen, making it
more robust against patient movement [1].

Other non-contact methods take inspiration from the thermistor-
in-nose technique, and uses a thermal camera to measure the change
in temperature of the patient’s skin underneath their nose [7] [17].
This method disregards exhaled air from the mouth, making it
unsuitable for sleep apnea studies since sufferers usually breathe
through their mouth. 3D depth imaging sensors have also been
used to monitor respiration by measuring the volumetric deforma-
tion of a patient’s chest [14]. This method has the added benefit
of being able to infer breathing volume from chest displacement
and visualize complex chest deformations. However, this method
can suffer inaccuracies due patient movement and clothing that
interferes with the reconstruction. Another similar method uses
doppler radar to measure chest movement [8]. However, unlike 3D
scanning methods, this method can only measure one point on the
body of the subject at a time. Due to variance in physical character-
istics and how people breathe, successful measurements depend on
determining the correct correlation between chest movement and
respiratory behaviors.

A method similar to our proposed technique has been used to
study nasal exhale activity [3] using non-contact visualization. In
this technique, the patient exhales through their nose onto a ther-
mochromatic liquid crystal film, and signature images are taken
on the other side using a film camera. Our method improves upon
this by using a thermal camera and image processing, neither of
which were widely available during these initial experiments. The
proposed technique has also been used to visualize gases for other
applications, such as visualizing airflow from air diffusers [4] and
examining the temperature distribution of air coming out of cooling
passages [16], both of which are analogous to our domain.

3 METHOD

Visualizing exhale patterns due to the thermal intensity of the
breath with respect to the cooler surrounding environment is both
an intuitive and straight-forward process for understanding breath-
ing behaviors such as rate, strength, and the nose/mouth distri-
bution of a natural exhale. Our method is based on this premise
and implemented through the process of projecting an individual
exhale onto a projection medium that is used to visualize the ther-
mal distribution of the exhale pattern. The intuitive result of this
process is shown in Figure 1. This allows us to use thermal imaging
to record exhale events during the normal breathing process as
they are projected onto a surface medium and then analyze the
respiratory behaviors based on the resulting thermal distribution,
as outlined in Figure 2.

Medium
Projection

Thermal
Imaging

Respiratory
Analysis

Figure 2: Method overview for medium projection-based
thermal respiratory analysis. This method provides a practi-
cal link between affordable thermal imaging devices, widely
available project mediums, and effective respiratory moni-
toring for children and long-term studies.

The implementation of our method is based on several core ad-
vantages provided by Python including: complete embedded device
control (Raspberry Pi) written exclusively in Python, rapid pro-
totyping for experimental design, and real-time image and signal
processing within compute-bound hardware. These aspects vital
for rapid experimental and design changes that are required for
integrating different algorithms into our prototype. We use the
Python OpenCV (Open Source Computer Vision Library) [2] and
NumPy (Numerical Python) [15] modules for image processing
and statistical analysis, the SciPy (Scientific Python) module [6]
for signal processing, and PyQtGraph and PyQt5 for visualization.
These Python libraries provide the foundation of both the visual-
izations and the signal processing required to extract respiratory
behaviors using an inexpensive, compute-bound, mobile device of
our implemented prototype.
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3.1 Thermal Imaging

Detecting the physical exhale process through the use of thermal
imaging provides an intuitive method for visualizing an individual’s
breathing characteristics. This basic principle is based on the obser-
vation that the general indoor ambient temperature is commonly
much lower than an individuals general exhale temperature, thus
thermal cameras can be used to detect slight changes in temperature
related to breathing behaviors. However, the exhale temperature
dissipation is extremely rapid and is difficult to capture within the
duration between the exhale and its complete dissipation. High-end
thermal imaging devices are capable of detecting this rapid dissipa-
tion, but are expensive and lack versatility. Therefore, to provide a
practical solution for inexpensive thermal cameras, we have devised
a material-based thermal imaging method for capturing rapidly dis-
sipating exhale behaviors within a medium for respiratory analysis.
This material-based method allows us to capture thermal exhale
behaviors to solve the rapid dissipation problem and can be used
with inexpensive thermal cameras.

3.2 Medium

The performance of this method relies heavily on the choice of
medium material based on its thermal retention properties. The
ideal medium material should have thermally conductive properties
that reflect the temperature changes from the exhale but should
also allow for rapid dissipation of the heat between breaths. This
material should also be as thin as possible to promote this dissipa-
tion process within the material as quickly as possible and should
also have a high emissivity so that changes in temperature can be
seen with the thermal camera. Therefore the specific material used
in the projection of the patient’s breath should adhere to a unique
set of material properties. It should be (1) thermally conductive,
(2) allow for rapid thermal dissipation, (3) be thermally opaque,
(4) retain heat signatures long enough to capture, (5) should not
introduce material composition patterns into the resulting images,
and (6) should be a material that is common and widely available.

(@ () ©

Figure 3: Medium materials (a) cotton, (b) linen, and (c) copy
paper with various opaque thermal levels. If the material is
not thermally opaque, the patient’s face can be seen through
the medium, disrupting the quality of our analysis.

In the preliminary experiments conducted with our setup, we
explored several medium materials that are commonly available
and inexpensive including: stretched cotton, linen, and standard
copy paper. The two most important elements that contribute to
the effectiveness of the material are defined by (1) the materials
thermal dissipation and (2) if the material is thermally opaque. This
is because during the experiment the patient is directly on the
other side of the camera, making them visible through the medium
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when they are not breathing. The thermal visualizations of these
materials shown in Figure 3 illustrate the problem of seeing the
patient’s heat signature through the medium for cotton and linen.
This problem is solved using a more thermally opaque material:
standard copy paper, which has a constant thermal distribution as
shown in Figure 3 (c), under the same environmental conditions.

3.3 Embedded Python Processing

For room-temperature operating thermal imaging devices, high-
performance is associated with relatively low frame-rates due to the
hardware limitations imposed by the internal sensors and computa-
tional power of the devices. Similarly, the Raspberry Pi has a limited
computational capacity, even for standard imaging and signal pro-
cessing algorithms on moderately sized datasets. Since we are using
Python on embedded systems for device control, image processing,
and real-time signal processing, the computational efficiency of the
core Python algorithms within NumPy, SciPy, and OpenCV play
a critical role within our performance benchmarks. To minimize
the impact of these performance metrics, we provide a distributed
parallel computation of our core algorithms, and then limit the com-
plexity of the image and signal processing algorithms required to
perform the respiratory analysis. This process allows us to port our
Python implementation to the compute-bound mobile device and
obtain real-time visualizations of the thermal distributions recorded
on the projection medium.

3.4 Data Processing and Visualization

The data processing and visualization objective of the prototype
system is directed at the implementation of an embedded system
running Python that executes on the compute-limited Raspberry
Pi. To facilitate high performance within this domain, we empha-
size the simplicity of the computational image processing that is
required per frame and the input streams from available sensing/-
controlled devices. This is due to both the data stream that can be
provided from the FLIR C2 sensor, image processing algorithms, and
the signal processing required to extract the breathing behaviors
recorded on the medium.

The primary processing component of the prototype is based on:
(1) thermal sensor image generation, (2) thermal image processing,
and (3) the signal processing required to extract the breathing
behavior from the set of frames. When a new image is received
from the thermal imaging sensor, we apply a two-dimensional
gradient-weight function to the image to give a stronger weight
to pixels in the center of the image, and less to the pixels near the
edge of the image due to the thermal conductivity of the structural
frame holding the medium. We subtract the previous image from
the current image to get the difference, and then sum the positive
values, which indicate increasing temperatures.

2mn
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w(n) = a — fcos [ ] where @ = 0.54, f =046 (1)

To determine the breaths per minute, we multiply the sampled
breathing data b(n) by a Hamming window w(n) to define the
function f(n) = b(n) * w(n), and then use a fast Fourier transform
to convert the data from the time domain to the frequency domain.
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Based on the implementation of the DFT within NumPy, we expand
this to the following expression for the breathing rate within the
frequency domain:

N
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We then take the modulus squared of this convolution within the
frequency domain, and find the frequency with the highest am-
plitude, which indicates the breathing rate in hertz. We multiply
this frequency by 60 to get breaths per minute. The following code
snippet shows how to accomplish this in Python using NumPy and
SciPy. We assume two NumPy arrays are previously defined: data,
which holds the thermal sums for each frame, and seconds, which
holds the time-stamps for each frame.

# Multiply the data by a hamming window
window = scipy.signal.hamming (1000, sym = @)
data *= window

# FFT transform and modulus squared
fft = numpy.fft.fft(data)

fft = numpy.absolute(fft)

fft = numpy.square(fft)

# Frequency samples

frequencies = numpy.fft.fftfreq(
data.size,
d=seconds[1] - seconds[0]

)

# Find the index of the maximum FFT value,
# and get the respiration frequency
max_idx = np.argmax(fft)

breaths_per_sec = frequencies[max_idx]
breaths_per_min = breaths_per_sec * 60

Choosing a window size for the thermal data is a delicate balanc-
ing act. If the window is too large, the application will not report
changes in breathing rate quickly enough. On the contrary, if the
window size is too small, the reported breathing rate would have
larger fluctuations and a higher error. In our application, we have
chosen a window size of 100 data points, and a minimum of 20
data points in the window before starting to calculate breaths per
minute. This means that once the window is full, the breathing rate
is calculated from the previous 25 seconds of data.

4 EXPERIMENTAL DESIGN

To demonstrate the validity of this method for reliably measuring
breathing rate of an individual, we have implemented two different
experimental setups using an inexpensive and commercially avail-
able thermal camera. In the first experimental design, we provide a
proof-of-concept for the medium-based exhale monitoring by using
a Raspberry Pi controlled fan. This setup allows for precise control
of fan timing, duration, and strength. In our second experimental
setup, human subjects are studied to see how our method works
under real-world conditions. To visualize these results, we have
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developed a graphical user interface in Python that displays the
thermal data and breathing rate in real-time. This tool can be used
by a medical professional to monitor the breathing behaviors of a
patient in a natural setting for long-term monitoring.

4.1 Thermal Cameras

We use two thermal cameras in this experiment. The first and pri-
mary camera is a FLIR C2 camera. This camera is inexpensive, has
an 80x60 thermal sensor array, and streams video to a PC at approx-
imately 5 frames per second. This camera is the primary camera
used in our experiments in order to prove that this method works
with inexpensive equipment. The second camera used is a FLIR
A-series camera with a custom filter that allows us to view exhaled
COg gas directly. This camera has frame rates of 30 and 60[fps], has
a 640x512 thermal sensor array, and is relatively expensive. The
A-series camera is used for verifying different medium materials,
and is used as a ground-truth reference for data taken with the C2
camera for the medium.

4.2 Fan Experiment

The fan experiment is designed to simulate realistic breathing ac-
tivity, and gives us the ability to programmatically set variables
that are difficult to control in human subjects, such as breathing
rate and strength. In this experiment, a fan blows air through a
heated brass tube onto the surface of the medium, assembled by 3D
printed components.

Controller Protptype

Figure 4: Fan experiment setup illustrating the overall setup
of the fan, medium, and thermal camera. The heating ele-
ment provides a constant heat source that simulates human
breathing through the brass tube. The medium separates the
exhale and the thermal camera.

The brass tube is heated to approximately 60°C so that air passing
through the tube will be heated to a temperature similar to that of
human breath. The heated air leaves a heat signature on the surface
of the medium, and the C2 camera records the heat signature on
the opposite side. Figure 4 shows our experimental setup.

This experiment setup uses an off-the-shelf squirrel cage blower
controlled by a Raspberry Pi 3 model B. The Raspberry Pi acts
as a variable power supply to the fan by setting a digital poten-
tiometer that limits the output voltage. The Raspberry Pi runs a
Python script at startup that uses the PySerial module to listen for
incoming serial commands, and sets the fan voltage with the Spidev
module. In this way, the fan and the thermal camera are controlled
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programmatically, and can therefore be synchronized. The image
and diagram within Figure 5 shows our Raspberry Pi fan controller
prototype (top) and the circuit diagram (bottom) used to implement
the simulated exhale controller.

& F1DI cable

vy Digital potentiometer I

Figure 5: Raspberry Pi automated fan controller prototype.
The implementation (top) provides the fan controller design
(bottom) for controlling the fan and performing computa-
tions for breathing analysis.

The fan experiment setup lets us set a constant known breathing
rate with which to compare to the thermal signal, and it lets us set
a consistent air speed and location of the thermal signature on the
medium. This is important for evaluating both the medium thermal
material properties as well as the exhale heat propagation. In each
of our fan experiments, we set the rate to 10 BPM, and limit the
fan speed to the lowest possible voltage, which is approximately
5V. Images obtained from this experiment show a central, round
gradient that appears and grows when the fan is turned on, and
shrinks and disappears once the heat source is removed. Figure 6
shows examples of thermal images obtained from this experiment
using the fan controller.

(a) (b)

Figure 6: Fan simulated exhale results. The images show a
clear thermal distribution on the medium tied to the simu-
lated exhale that corresponds to both duration and strength.
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When recording simulated exhale data, we record the on and off
times of the fan, as well as the the thermal images from the camera.
Figure 7 shows the thermal sums from the fan-based simulated
exhale plotted against the on and off times of the fan. The results
show a strong correlation between the thermal signal and the rate
at which the fan is turned on and off.

Thermal Difference Sums vs. Fan

1.01 —— Thermal data
Fan on
0.8
g 0.6
=]
o
T
X
& 0.4
0.2
0.0
0 10 20 30 40 50 60
Time (s)

Figure 7: Thermal sums versus fan on/off timing. This indi-
cates a strong correlation between the simualted exhale tem-
perature on the medium and the ground-truth timing of the
fan control.

4.3 Human Experiment

The human experiment examines natural breathing from human
subjects. In this setup, the C2 camera and the medium are both
mounted on a tripod. The subject sits in a chair, and the medium
and camera are positioned so that the exhaled breath from the
subject collides with the medium. As a way of validating the heat
signatures on the medium, the A-series camera records the exhaled
breath simultaneously from the side. From this data, we know
exactly when each breath occurs, as well as whether the source
of the exhale was the mouth, nose, or both. Figure 8 shows our
experimental setup.

Figure 8: Human trial experimental setup. The C2 records
the medium thermal signature and the A-series camera pro-
vides the ground-truth values for the breathing rate and du-
ration.
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Images from the A-series camera that visualizes CO2 shows a side
profile of the patient’s face, as well as a jet stream of air during
normal exhalation. Figure 9 shows examples of images obtained
from the A-series camera, demonstrating no exhale (a), exhale from
the mouth only (b), exhale from the nose (c), and simultaneous ex-
hale from the nose and mouth (d). The duration and timing of these
recorded exhale behaviors are then compared with the medium-
based trial to verify that the exhale behaviors extracted from the
medium match the actual behaviors.

Figure 9: Images from the A-series CO2 camera showing (a)
no exhale, (b) exhale from the mouth, (c) exhale from the
nose, and (d) exhale from the mouth and nose.

Subjects are asked to alternate breathing between their nose,
mouth, or both throughout the course of each 60 second trial. We
have developed a graphical user interface to display results from
these trials, providing an interactive form of monitoring the real-
time data generated by our approach. The GUI is written using
PyQt5, and plots data using PyQtGraph. We continuously cycle
data from these 60 second trials to analyze real-time data from a
camera. The application calculates the positive difference sums of
each image and stores them in a window queue. Once this window
contains enough data, the application performs an FFT on the entire
queue when a new frame is received. Once the queue is full, old data
is removed to resume the moving window analysis. The window
holds approximately 25 seconds of data. Figure 10 shows our GUI
processing information from the fan experiment.

eie oreathing_rate_guipy.

Breathing Rate Monitor
> Start Reset

QueueResen v o
Respiration Rate: 0,164 + 0,006 Hz
9.8 + 0.4 BPM

200000
% 160000

80000

Figure 10: Breathing rate monitor GUIL
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5 RESULTS

The results generated by using our prototype experiments are eval-
uated by two criteria: (1) the results of the experiments with respect
to breathing rate and (2) the results of measuring breathing strength.
In addition to these two results we also analyze the human-based
trials by evaluating the nose/mouth distribution using the medium.

5.1 Respiration Rate

In our results we simply classify the breathing rate results from the
fan-based simulated exhale and the human-based experiments as
breaths per minute (BPM). This value is indicated in the interactive
application as the respiration rate, which is updated in real-time.

5.1.1 Fan Experimental Results. To determine the accuracy of
our approach, we analyze the results from the fan-based exper-
iment as our control. Since we are able to programmatically set
the breathing rate in this experiment, we have a set internal and
ground-truth with which to compare results from our prototype.
In the fan experiment setup, the end of the brass tube is located six
inches away from the medium, and the C2 camera is placed 15.5"
away from medium in order to record as much of the surface area of
the frame as possible. The medium is a 11"x17" piece of copy paper.
We conduct three 60[s] trials with this setup. Each of these data
sets are processed, and breaths per minute statistics are recorded
for each individual experiment. Table 12 shows the statistics of the
calculated breaths per minute (BPM) for each trial.

Fan Simulated Breaths Per Minute
Sample Mean Std. Dev.
1 10.00 0.203
2 9.996 0.159
3 10.008 0.160

Figure 11: Resulting breaths-per-minute statistics from
three fan trials. This demonstrates the validity of our ap-
proach under ideal circumstances.

The minimum breaths per minute from sample 1 has the greatest
absolute difference from the actual rate of 10 breaths per minute at
9.57 breaths per minute. This is an accuracy of + 4.3% in the worst
case, giving us confidence that our processing method is accurate
under ideal conditions imposed by the fan-based experiment. This
validates our initial hypothesis that our method can be used to
accurately track exhale rate through the medium. However, in
order to assess the robustness of this method, we must look at the
results of the human experiment.

5.1.2  Human Experimental Results. In the human-based form
of the experimental setup, numerous additional factors contribute
to the degradation of the breathing signal that we record on the
medium. These include: (1) the patient’s distance to the medium, (2)
the orientation of their face and exhale, and (3) the natural breath-
ing patterns incurred by exhaling through the mouth rather than
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through a symmetrical tube which generates a much more turbu-
lent flow. Based on these factors, we see the naturally occurring
reduction in the accuracy of the rate, however this reduction in
accuracy remains relatively small throughout our trials.

Human Breaths Per Minute from Medium and Reference
Sample Medium Side Medium Side Std.

Mean Mean Std. Dev. Dev.

1 17.455 17.581 1.346 1.205

2 10.509 10.801 0.471 0.270

3 10.577 10.299 0.398 0.294
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Respiration Rate Histogram

Figure 12: Breaths-per-minute statistics from three human
trials, comparing medium data and side-view data.

For the human experiment, we collect 60 second samples of
data from three different subjects breathing onto the medium. As
expected, these samples are far more chaotic than the thermal
signatures from the fan experiment, in breathing rate, location
of the thermal signature, and shape of the thermal signature on
the medium. As previously mentioned, we simultaneously record
thermal data with the A-series camera from a side view to validate
the breathing rate from the medium data. We process the reference
data in the same way that we process the medium data, but we crop
out the right half of the image to remove the face of the subject,
leaving only the exhaled air and the medium visible. We calculate
the breaths per minute of both the reference data and medium data
for 60 seconds, and then compare these data sets. Figure 13 shows
the breaths per minute from each data set plotted on each axis. A
clear linear correlation exists between the two data sets.

Medium and Reference Correlation
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Figure 13: Correlation between the reference and medium
data from our human subject from our experiments.

From this data, we can see that the subject is altering their respi-
ration rate between 15 and 18[BPM] over time. Figure 14 shows
another view of this data as a histogram, showing the strong corre-
lation between the reference and medium evaluation.
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Figure 14: Histogram of reference and medium data from
our human subject, showing the strong correlation between
the reference and medium.

5.2 Breathing Strength

Another metric that is potentially attainable through this method is
breathing strength. If the subject changes their breathing strength
over time, this should theoretically result in a visible difference in
the thermal signature on the medium, and in the resulting differ-
ence sums. To test this theory, we use the fan experiment setup to
simulate different breathing strengths. This is done by changing
the voltage supplied to the fan, which modifies the speed of the fan.
In this experiment, we simulate breathing at 10 BPM, and toggle
between a light and forceful speed every other breath. Figure 15
shows the resulting data from this experiment. The results show a
clear change in the amplitude of the waveform between breaths.

Exhale Alternating Strength Fan Simulation

1.0 —— Thermal data
Fan on

0.8 -

0.6 -

Pixel sums
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0.2

0.0 -

15 20 25 30 35 40
Time (s)

Figure 15: Simulation of light and forceful exhales with the
fan experiment. This experiment illustrates that we can de-
tect varying strength exhales based on the thermal signature
on the medium.

In human trials, participants are asked to alternate between a
light exhale and a more forceful exhale with each breath. Figure 16
shows a plot of the increasing difference sums over time from this
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experiment. There’s clear separation in amplitude between the light
exhales and the forceful exhales, meaning that the exhale strength
of an individual is a metric that can be extracted from the thermal
data that we collect on the medium.
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Figure 16: Alternating light and forceful exhales from a hu-
man subject. The clear separation in the magnitude of the
thermal signature allows us to provide a breathing metric
for breathing strength.

5.3 Nose and Mouth Separation

In human trials, participants are asked to breathe from their nose
only, mouth only, and then to breathe naturally. In these trials, the
thermal signature on the medium differs depending on how the
subject breathes. Figure 17 shows a thermal image of the medium
during mouth breathing on the left, and a thermal image of nose
breathing on the right. These images differ in the shape and location
of the thermal signature on the medium. It is feasible that the
distribution of airflow between the nose and mouth can be extracted
from these thermal signatures, and used to determine if the subject
is having difficulty breathing through their nose.

Figure 17: Exhale from mouth (left) and exhale from nose
(right) from a rotated view. Exhale signatures between each
pattern are clearly visible.

5.4 Prototype Performance Analysis

To evaluate the performance of our software on a low-powered
multi-core CPU, we use a Raspberry Pi (3) model (B) to process
thermal data taken with the C2 camera. Our optimized algorithm
processes frames at a much faster rate than the room-temperature
thermal camera, therefore this indicates that images from this par-
ticular device could be processed with less powerful hardware.

Breawn Schoun, Shane Transue, and Min-Hyung Choi

However, our system could be used with a thermal camera with
a higher frame rate and larger image size, which may present a
challenge to low-power hardware. To determine the our system’s
capabilities when used with more powerful thermal cameras, we
change the thermal image data-stream between 160x120, 320x240
and 640x480 resolution images and measure the average processing
time per image. If the frame rate from the camera is too high to
process in real time, we are forced to either drop frames to maintain
real time processing, or we must parallelize the processing function
and add buffering to process multiple buffered frames at once. The
diagram in Figure 18 illustrates how we compute the difference
images in parallel using multiple cores.
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Figure 18: Parallel distribution of the core executions for
computing the difference images of the video stream.
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To determine the performance of parallel processing at high
frame rates, we store the frames in a buffer and use the pathos
multiprocessing module to process multiple frames simultaneously.
We chose to parallelize the image processing steps that take the
most time and are not order-dependent: differencing two images,
blurring the resulting difference images (for noise tolerance), and
summing the computed values. Our implementation is described as
follows: two images are passed to each core, and each core processes
the difference between the two images, blurs the difference image,
and sums the positive values in the difference image, as shown in
Figure 18. We demonstrate our results from running our program
with different image sizes and cores as shown in Figure 19.
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Figure 19: Comparison of processing of various image sizes
computed in parallel using 1 to 4 cores on the Raspberry Pi
(3). Our parallel implementation using the pathos multipro-
cessing module allows real-time (respiratory-rate) monitor-
ing through a self-contained embedded system.
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6 EVALUATION AND DISCUSSION

A small, independent embedded device that monitors respiratory
activity would be an effective and versatile tool in clinical pul-
monary and sleep-related studies where comfort of the patient is
a primary objective. Our results show that we can make accurate
predictions about respiratory behaviors in an environment that is
natural and comfortable for the patient, and that inexpensive low-
powered hardware is capable of processing common thermal image
sizes at reasonable rates. Python’s extensive scientific computing
modules, as well as easy-to-use image and parallel processing mod-
ules, provide the possibility of extending this software to include
additional respiratory analysis, such as measuring exhale distribu-
tion, strength, and tidal volume estimates. Through our real-time
processing, we have begun to evaluate use-cases and clinical impli-
cations of using a self-contained respiratory monitoring devices for
short-term studies related to natural breathing behaviors. To further
evaluate the impact of this design, we also consider the medical sig-
nificance of our method and analyze the challenges associated with
iterating the development of our working prototype into clinical
experiments to determine the feasibility of the proposed system.

6.1 Medical Significance

This method of respiration monitoring has many implications for
the medical field for breathing behavior monitoring and evaluation.
This method is ideal for sleep studies and provides precise monitor-
ing of natural and unhindered breathing behavior, as it measures
respiration directly, but allows the patient to breathe without ob-
struction or discomfort. Because this method works regardless of
the age and physical characteristics of the individual, it could be
used to monitor the respiration of small children or infants. This
method has the potential to be used to measure other respiratory
metrics as well, such as breathing strength, tidal volume, and nose
to mouth distribution. Nose to mouth distribution is a valuable met-
ric for medical professionals who need to identify when a patient
is having trouble breathing through their nose, which may indicate
some form of respiratory obstruction. This could be particularly
important for determining whether an infant is having difficulty
breathing through their nose for extended durations, which can be
detrimental to their physical development.

6.2 Challenges

One fundamental challenge that needs to be addressed to make this
method robust is how to handle patient movement during sleep-
based studies. The medium needs to be in line with the subject’s face
despite how the patient moves their head, and the camera needs to
be able to record the thermal signature where the camera image
plane is parallel to the medium. Another significant challenge is
determining the optimal distance to place the medium from the
patient. If the medium is placed too close to the patients face, they
may become uncomfortable and tend to look away from the medium.
If the medium is too far away, the breathing behavior becomes less
prominent and the respiratory behaviors are harder to identify
and extract as unique signatures. Both of these factors contribute
to difficulties in obtaining reliable respiratory behaviors over an
extended period of time.
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7 CONCLUSION

In this paper, we have described a method of non-contact respira-
tion rate monitoring that provides a more direct measurement than
its counterparts. We have introduced a graphical user interface for
use by medical professionals that displays the thermal data and
breathing rate of the patient in real time. Results from our fan ex-
periment show that we are able to extract breathing rate from this
method with reasonable accuracy. We have also demonstrated the
potential for other vitality metrics such as breathing strength and
nose to mouth distribution to be extracted from the thermal signa-
ture. The combination of Python processing and a low-powered
CPU allows this system to be a small, standalone device, while still
processing thermal data in real time. This method is suitable for
a wide variety of patients, and can be implemented as a low-cost
medical device on minimal hardware.
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