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Abstract

Because the estimation of a fundamental matrix is much dependent on the correspondence, it is important to select a

proper inlier set that represents variation of the image due to camera motion. Previous studies showed that a more

precise fundamental matrix can be obtained if the evenly distributed points are selected. When the inliers are detected,

however, no previous methods have taken into account their distribution. This paper presents two novel approaches to

estimate the fundamental matrix by considering the inlier distribution. The proposed algorithms divide an entire image

into several sub-regions, and then examine the number of the inliers in each sub-region and the area of each region. In

our method, the standard deviations are used as quantitative measures to select a proper inlier set. The simulation

results on synthetic and real images show that our consideration of the inlier distribution can achieve a more precise

estimation of the fundamental matrix.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stereo vision, a useful technique for obtaining

3-D information from 2-D images, has many
practical applications including robot navigation

and realistic scene visualization. Given a point in
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the one image, we find the corresponding point in

the other image so that the two points are the

projections of the same physical point in space. In

this process the fundamental matrix representing
succinctly the epipolar geometry of stereo vision is

estimated. The fundamental matrix contains all

available information on the camera geometry and

it can be computed from a set of point corre-

spondences (Faugeras, 1992; Trucco and Verri,

1998).

Several methods to estimate the fundamental

matrix have been proposed for over two decades.
The main difficulty in estimating the fundamental
ed.
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matrix stems from the unavoidable outliers inher-

ent in the given correspondence matches. Because

the outliers by a false match can severely disturb

estimation of the fundamental matrix, we should

identify and then reject them. The robust algo-

rithms to solve the problems of errors on the point
locations and mismatches have been actively

studied up to now (Zhang et al., 1994). However,

these methods based on the aleatory way of

selecting the points are much affected by which the

corresponding points are selected (Rousseeuw,

1987; Fischler and Bolls, 1981). In general the

evenly distributed corresponding points can thor-

oughly represent the variation of the image due to
the camera motion, so it is important to select a

proper inlier set for a more precise fundamental

matrix. However, no previous method has taken

into account the distributions when the inliers are

detected.

This paper presents two novel quantitative

measures to select a proper inlier set by consider-

ing the inlier distributions. Our method is based on
least-median-squares (LMedS), which calculates

the median of distances between points and epi-

polar lines for each fundamental matrix (Zhang

et al., 1994). In this process LMedS eliminates

many outliers, and then inliers and the fundamen-

tal matrix are obtained. The first method divides an

image uniformly into several sub-regions based on

the number of the inliers. We calculate the standard
deviation of the number of the inliers in each sub-

region and the average value, which is the total

number of the inliers divided by the number of sub-

regions. The obtained standard deviation repre-

sents the degree of the point distribution in each

sub-region relative to the entire image. The ob-

tained information is used as a quantitative mea-

sure to select the evenly distributed point set. The
second method uses the Delaunary triangulation

connecting the inliers to decompose an image into

non-uniform sub-regions, and the area of each sub-

region is computed. We calculate the average area

by dividing the area of the image by the total

number of the triangles. Then the standard devia-

tion of the area of each sub-region and the average

is used as a quantitative measure. The experimental
results on synthetic and real images show that our

consideration of the inlier distribution can provide
a more precise estimation of the fundamental

matrix.

The structure of the paper is as follows. Section

2 introduces the epipolar geometry and reviews

previous work on robust estimators for the fun-

damental matrix. Section 3 discusses the effect due
to the inliers distribution in estimating the funda-

mental matrix. After details of two novel algo-

rithms to consider the inliers distribution are

presented in Section 4, we show the experimental

results for synthetic and real scenes in Section 5.

Finally, the conclusion is described in Section 6.
2. Epipolar geometry

Epipolar geometry is a fundamental constraint

used whenever two images of a static scene are to

be registered. Given a point in one image, corre-

sponding point in the second image is constrained

to lie on the epipolar line. All the epipolar geo-

metry is contained in the fundamental matrix
(Hartley, 1997). The epipolar constraint can be

written as:

u0TFu ¼ 0; ð1Þ
where u and u0 are the homogeneous coordinates

of two corresponding points in the two images. F
is the fundamental matrix that has rank 2, and

since it is defined up to a scale factor, there are

seven independent parameters. From Eq. (1), the
fundamental matrix can be estimated linearly,

given a minimum of eight corresponding points

between two images (Hartley, 1997; Longuet-

Higgins, 1981). Because the fundamental matrix

contains the intrinsic parameters and the rigid

transformation between both cameras, it is widely

used in various areas such as stereo matching,

image rectification, outlier detection and compu-
tation of projective invariants.

Several algorithms for the estimation of a fun-

damental matrix are categorized into three meth-

ods: the linear, the iterative and the robust (Salvi

et al., 2001). The linear and the iterative methods

use some points to estimate the fundamental ma-

trix. First, the linear approaches, such as eight-

point algorithm, estimate the fundamental matrix
by using eight corresponding points. With more
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than eight points, a least mean square minimiza-

tion is used, followed by the enforcement of the

singularity constraint so that the rank of the

resulting matrix can be kept in 2. These ap-

proaches have been proven to be fast and easy to

implement, but they are very sensitive to image
noise. Secondly, the iterative methods are based on

optimization criteria, such as the distance between

points and epipolar lines, or the gradient-weighted

epipolar errors (Hartley and Zisserman, 2000).

Although these methods are more accurate than

the linear, they are time consuming and much af-

fected by the unavoidable outliers inherent in the

given correspondence matches and the error on the
point locations. Finally, the robust methods such

as LMedS and random sampling consensus

(RANSAC), can cope with either outliers or bad

point localization. RANSAC uses a minimum

subset for parameter estimation and the solution is

given by the candidate subset that maximizes the

number of consistent points and minimizes the

residual (Fischler and Bolls, 1981). It is computa-
tionally infeasible to consider all possible subsets,

since the computation load grows exponentially

according to the number of the inliers. Therefore,

additional statistical measures are needed to derive

the minimum number of sample subsets. In addi-

tion, because of the restrictive way of sampling the

points randomly, the obtained fundamental matrix

can be much changed by which points are selected.
3. Consideration of the point distribution

In order to cope with the unavoidable outliers

inherent in the given correspondence matches, our

methods are based on LMedS that calculates the

median of distances between points and epipolar
lines for each fundamental matrix. RANSAC par-

adigm finds a significant set of data points consis-

tent with consensus group, and the remaining data

points are rejected as outlier. Instead of finding a

large consensus group, LMedS estimates the model

parameters by minimizing the median of the

squared residuals computed from the entire data set

(Zhang et al., 1994). The residual error is defined as:

T 0 0
r ¼ dðu; F u Þ þ dðu ; FuÞ; ð2Þ
where dðx; lÞ is the distance between a point x and

a line l.
RANSAC method selects the biggest consensus

set of inliers that the residual error is smaller than

a user defined threshold. The main difficulty with
RANSAC is that a compatibility threshold has to

be preset. On the contrary, the LMedS method

does not require such a threshold. The estimates

must yield the smallest value for the median of

squared residuals computed from the entire data

set. RANSAC depends on the number of inliers

and the LMedS method does the least median of

residual. However, these approaches are insuffi-
cient for detection of a proper inlier set for the

estimation of a precise fundamental matrix. In

other words, because the fundamental matrix

contains the relative orientation and position be-

tween both cameras, the inliers should reflect suf-

ficiently 3D structure of the scene as well as the

variation of the image due to camera motion. If

the proper inlier sets are selected based on the
point distribution, we can achieve a more precise

estimation of the fundamental matrix.

In order to show whether the evenly distributed

point set is effective for the fundamental matrix

estimation, we have simulated on two pairs of

synthetic images from a same camera motion as

shown in Fig. 1(a). In the one pair of synthetic

images, feature points are mainly distributed on
the left-sided region, and the points are evenly

distributed in the other region. We have tested 100

times on each image by the LMedS method. Fig.

1(b) and (c) present distribution of feature points

and the distance error graph for the obtained

epipole relative to the real at each time, respec-

tively. The dot line and the solid line in (c) repre-

sent the distance error of the left and right images
in Fig. 1(a). The simulation results show that if the

evenly distributed inlier sets are detected, we can

estimate a more precise fundamental matrix. This

paper presents two quantitative methods to eval-

uate the distribution of the inliers.

3.1. Point density

The standard deviation of the point density in

sub-regions and an entire image can be used to

evaluate whether the points are evenly distributed.



Fig. 1. Effects of the points distribution for the fundamental matrix estimation: (a) synthetic images with a same camera motion,

(b) distribution of feature points and (c) distance error graph of LMedS method.
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The image is divided into the uniform sub-regions

according to the number of the inliers by Eq.

(3), and then we calculate the point density of sub-

regions and an entire image. The width (Ws)

and the height (Hs) of the sub-region can be writ-

ten as:

Ws ¼ W =intð
ffiffiffiffi
N

p
Þ; Hs ¼ H=intð

ffiffiffiffi
N

p
Þ; ð3Þ

where N is the number of the inliers, and int(Æ)
means conversion to integer. W and H are the

height and the width of the image. Two left images
in Fig. 2 show sub-regions divided uniformly on

the synthetic image and the real. The proposed

method computes the standard deviation of two

densities that represents a degree of the point dis-

tribution in each sub-region relative to the entire

image. The obtained information is used as a

quantitative measure to select the evenly distrib-

uted point sets. The standard deviation of the
point density is defined as:

rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i¼1

Psi �
N
Ns

� �2

vuut ; ð4Þ

where Ns is the number of sub-regions, N and Psi
are the number of inliers and that in the ith sub-

region, respectively.
3.2. Area density

In the second method, the Delaunay triangula-

tion connecting the inliers decomposes the image

into non-uniform sub-regions. The main rule for

the Delaunay triangulation can be formulated in
the circle criterion (Delaunay, 1934). The Dela-

unay triangulation in 2-D consists of non-over-

lapping triangles where no points in the triangle

are enclosed by the circumscribing circles of an-

other triangle. As shown in Fig. 2, the entire image

is segmented into several non-uniform sub-regions,

and the area of each sub-region is computed. We

obtain the average area by dividing the area of the
image by the number of the triangles, and the

standard deviation of the area of each sub-region

and the average is used as the quantitative mea-

sure. The area of triangle is defined as:

AD ¼ 1
2
ke2k v2

���� � eT1 e2
ke2k

e2

����; ð5Þ

where vi is the ith vertex of the triangle, e1 and e2
are vectors, e1 ¼ v2 � v1, e2 ¼ v3 � v1. The stan-

dard deviation of the area density is defined as:

rA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

ðADi � AaverÞ2
vuut ; ð6Þ



Fig. 2. Uniformly and non-uniformly segmented sub-regions by the proposed methods: (a) synthetic and (b) real image.

J.-K. Seo et al. / Pattern Recognition Letters 25 (2004) 733–741 737
where NT and Aaver are the number of triangles by

Delaunay triangulation and the average area.
4. Proposed algorithm

LMedS method chooses the fundamental matrix

with the least median of residual. As shown in Table
1, however, the median minimization approach al-

ways does not guarantee a precise solution. The

proposed algorithm combines LMedS method with

the quantitative measure to select the evenly dis-

tributed point sets. Among the inliers in the range
Table 1

Distance errors of epipoles with the smallest five medians on the syn

Median value x y

380.50 180.20

Case 1 0.01385 389.40 189.18

Case 2 0.02252 380.12 183.17

Case 3 0.02668 382.60 186.87

Case 4 0.03349 378.47 184.30

Case 5 0.04224 392.00 179.24
from the least median to the larger medians by 10%,

we choose the inlier set with the least deviation of

the inlier distribution. Sum of squared differences

(SSD) is used as a matching method, and it estab-

lishes the correspondence between images. The

iterative number is computed by following equation:

N ¼ logð1� P Þ= logð1� ð1� eÞqÞ; ð7Þ
where P is the probability that these points are the

inliers in sampling q points at N times. For

example, in case that every point is the inlier, P is

1. In general, P is near 1. e is the ratio of the outlier

to all points, and q is the number of the sample
thetic image (Fig. 3)

Distance

error

Proposed method

Eq. (4) Eq. (6)

0.00

12.64 1.2157 82343.09

2.99 1.1742 81594.95

6.99 1.2278 82778.39

4.57 1.2398 83923.38

11.54 1.2238 82715.67
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points. Since the eight point algorithm uses eight

points to estimate the fundamental matrix, q is 8.

In the LMedS method, a threshold to detect the

inliers is calculated by using the median value as

the following (Zhang et al., 1994):

s ¼ 2:5� 1:4826½1þ 5=ðn� qÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
median

p
; ð8Þ

where n is the number of correspondences.

The proposed method chooses each inlier set by

using the computed median of residual, and com-

putes the standard deviation of the distribution of

each inlier set by Eqs. (4) and (6). Then we find the

inlier set with the least standard deviation. In the

final step, we re-estimate the fundamental matrix
from the selected inlier set by minimizing a cost

function that is the sum of residual of the inliers.

The proposed algorithm is summarized as follows:

1. Select a random sample of eight correspondence

points and compute the fundamental matrix (F
matrix) by using the selected point set, then cal-

culate the median of residual.
2. Repeat 1 for N samples (Eq. (7)) and store the

median and F matrix set.

3. Select the least median and the larger medians

than that by 10%.

4. Detect each inlier set by using threshold (Eq.

(8)) and compute the standard deviation of

the distribution of the inlier set (Eqs. (4) and

(6)).
5. Re-estimate F matrix from the inlier set with

the least standard deviation by minimizing a

cost function that is the residual sum of the in-

liers.
5. Experimental results

We have compared the experimental results of

previous methods such as normalized eight-point,

RANSAC and the LMedS method with the pro-

posed algorithm on synthetic and real images. In

order to check whether an optimal solution is

obtained in terms of the median error minimiza-

tion, we compute a real epipole on the synthetic
image (Fig. 3), and obtain the distance error be-

tween the real and the epipole by the LMedS
method. In this simulation, we can freely control

the camera parameters and motion, and the real

epipole and the fundamental matrix of the syn-

thetic images are computed precisely. Table 1

shows the obtained epipoles with the smallest five

medians on the synthetic image pair (Fig. 3). In
Table 1, x and y represent the epipole position, and
‘‘distance error’’ describes a distance error between

the real epipole and the computed. The simulation

results show that the median minimization ap-

proach always does not guarantee a precise solu-

tion. In other words, as shown in Table 1,

although the least median value in x and y is ob-

tained in case 1, we cannot always obtain a precise
fundamental matrix. Table 1 shows the proposed

methods obtain the smallest values in case 2, so we

can compute a more precise epipole in terms of the

distance error.

Fig. 3(a) shows the inlier set and the obtained

epipolar lines on the synthetic image pair, and (b)

represents the accumulation distance errors be-

tween the real epipole and the computed on 100
iterations. The proposed algorithm is compared

with previous methods, RANSAC and LMedS

method, when the sampling times and the number

of inliers is 500 and 120, respectively. In (b), the

proposed method obtains the best performance

over previous methods because of our consider-

ation of the inlier distribution. (c) provides the

comparison of the epipole distance error according
to the number of the matching points. As the

number of inliers becomes large, all methods show

better performances. Normalized eight points

algorithm, one of the direct methods, obtains the

worst results over other methods. In addition, the

proposed method gives relatively better results

over LMedS when the number of points goes more

than 80. The epipole distance errors according to
the sampling time are analyzed in (d) and the

number of the matching point is 120. Because

many points satisfying the specified condition are

used, RANSAC gives a relatively stable perfor-

mance independent of the sampling time. Al-

though LMedS method shows better results over

RANSAC, its performance is irregularly and lar-

gely affected by the sampling, and a large sampling
numbers do not always produce a good perfor-

mance. On the contrary, the proposed methods



Fig. 3. Experimental results on the synthetic image pair: (a) inliers set and the epipole, (b) accumulation distance error between the real

epipole and the computed, (c) the epipole distance error according to the number of the matching points and (d) epipole distance errors

according to the sampling time.
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obtain relatively better results than previous

methods.

Fig. 4 shows the experimental results on real

image. (a) shows a calibration rig image (left) and all

of the corresponding point flows (right) by matching

based on sum of square difference (SSD). (b) rep-

resents epipolar lines by camera calibration. Epi-
polar lines and the selected inlier set flows by LMedS

(left) and those by the proposed method (right) are

shown in (c). In the experiment, because the LMedS

considers only residual error, many points located

on the right and upper sides are lost. These points

are important for camera motion analysis, so the

results by LMedS are not precise as shown in (c). In

comparison of the experimental results on the real
image, we have ascertained that the proposed

method can select the evenly distributed inliers and

estimate the fundamental matrix more precisely.
6. Conclusion

For the estimation of an accurate fundamental

matrix, it is important to select the inlier sets that

reflect the structure and the variation of the image

due to camera motion. Previous methods often use

the least residual errors to select the inliers.
However, the experimental results show that the

median minimization does not always guarantee a

precise solution. This paper shows that if the

evenly distributed inliers are selected, we can

estimate a more precise fundamental matrix. Two

quantitative measures to select evenly distributed

points by considering the inlier distribution in an

entire image are presented. The proposed algori-
thm divides the entire image into the sub-regions,

and then examines the number of the inliers in

each sub-region and the area of each region. The



Fig. 4. Experimental results on the real image pair: (a) calibration rig image (left) and all of the corresponding point flows (right), (b)

epipolar lines by camera calibration and (c) epipolar lines and the selected inlier set flows by LMedS (left) and the proposed method

(right).
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experimental results on synthetic and real images

show that our consideration of the inlier distri-

bution can achieve provide a more precise esti-

mation of the fundamental matrix. These methods

can be used as a base for further work on camera
pose estimation and 3D scene geometry recovery.
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