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ABSTRACT

Reliable and effective occluded skeletal posture estimation is a challenging problem for vision-based
modalities that do not provide inter-surface imaging. These include both visible-light and depth-
based devices that all existing pose estimation techniques are derived from. This fundamental lim-
itation in skeletal tracking is due to the inability of these techniques to penetrate occluding surface
materials to derive joint configurations that are not directly visible to the camera. In this work, we
present a new method of estimating skeletal posture in occluded applications using both depth and
thermal imaging through volumetric modeling and introduce a new occluded ground-truth tracking
method inspired by modern motion capture solutions for tracking occluded joint positions. Using this
integrated volumetric model, we utilize Convolutional Neural Networks to characterize and identify
volumetric thermal distributions that match trained skeletal posture estimates which includes dis-
connected skeletal definitions and allows correct posture estimation in highly ambiguous cases. We
demonstrate this approach by accurately identifying common sleep postures that present challenging
cases for current skeletal joint estimation techniques and evaluate the use of volumetric thermal
models for various sleep-study related applications.

1. Introduction

Accurate and reliable occluded skeletal posture estimation presents a fundamental challenge for vision-based methods that rely on
depth-imaging (Mohsin et al., 2016) to form accurate skeletal joint estimations (Ye et al., 2011; Shotton et al., 2013) extracted from
carefully selected depth features (Shotton et al., 2011). Modern skeletal estimation techniques provide a solid foundation for skeletal
estimations of users in non-confined areas with no visual occlusions, however these techniques are not well suited for applications
that include visual obstructions such as respiration and sleep posture studies where patients are heavily occluded by both clothing
and common forms of bedding. While recent depth-based imaging methods (Achilles et al., 2016; Liu and Payandeh, 2016) have
begun exploring how to solve this problem using existing depth-based methodologies, they still lack two primary fundamental
components of occluded posture estimation: (1) the ability to provide an accurate ground-truth with an occluding medium present
and (2) the ability to deal with extensive depth-surface ambiguities that may drastically interfere with joint position estimations
required for accurate skeletal tracking. These ambiguities and direct occlusions incurred through depth imaging dictate that an
individual depth surface provided by these techniques is insufficient to provide a reliable means of estimating an occluded skeletal
posture, and in most cases fail to identify obscured skeletal joints. This is due to these techniques heavily relying on training-based
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approaches to infer joint positions and have no direct method for tracking occluded joints. In this work, we explore how the lim-
itations of depth-imaging can be supplemented through integrating thermal imaging to introduce a new method in occluded skeletal
posture estimation that includes tracking thermal signatures through an occlusion medium using volumetric modeling and how to
limit the feasible spatial domain of occluded joints within this volume for more reliable partial posture estimations that contain
completely obscured joints that can be inferred using existing techniques. We then extensively evaluate the reliability, accuracy, and
feasibility of using a thermal-depth fusion technique for various sleep related applications, including the clinical significance of
introducing a reliable occluded posture estimation algorithm for use with existing vision-based and radar-based (Nguyen et al., 2016,
2016) tidal-volume estimation techniques used within numerous types of sleep studies. These respiration analysis and tidal-volume
monitoring techniques require accurate skeletal posture for radar alignment (Nguyen et al., 2016) and joint position estimations for
4D chest respiratory model reconstructions (Transue et al., 2016).

In our novel approach to occluded skeletal posture estimation, we build off of our initial contributions within Transue et al.
(2017) to refine and evaluate our three primary contributions: (1) we present a thermal-based marker system for obtaining an
occluded skeletal posture estimate derived from modern motion capture techniques for defining a ground-truth for occluded skeletal
joint positions, (2) develop a volumetric representation of patient's thermal distribution within an occluded region to provide a highly
detailed posture volume reconstruction and vastly reduce the search space of potential positions for occluded joints, and (3) introduce
a coarse-grained skeletal posture estimation technique for identifying visually obscured joint positions. By addressing the challenges
in occluded thermal imaging and introducing a robust volumetric model for posture estimation, we evaluate the proposed method by
assessing its ability to correctly identify several common sleep postures and generate accurate skeletal joint positions based on an
occluded patient. We then extend our evaluation to analyze the feasibility of using the system within a clinical setting and thoroughly
investigate potential directions for improving upon our initial approach and implemented prototype.

Modern digital imaging devices contain several alternative forms of imaging that utilize different wavelengths of the electro-
magnetic spectrum that are capable of providing information about internal skeletal structures through occlusions. However, for both
practical applications and in medical practice these imaging techniques are not well suited, convenient, or safe for extended ex-
posures over long periods of time, as is common in most sleep studies. To strike a balance between safe and reliable imaging
techniques that allow us to gain information about the occluded skeletal posture of the patient, the developed hardware prototype
provides a real-time posture estimation derived from both depth and thermal imaging devices that are mounted on a common device
rail to provide an overlap of the Field-Of-View (FOV) that mimics a stereoscopic fusion of the two imaging modalities. From this
hardware setup, we can utilize existing methods within image stereoscopy (van Baar et al., 2012) to fuse the two image streams into a
coherent thermal point-cloud. From these parallel data streams, we provide a software interface that illustrates four components: (1)
the infrared stream, (2) the depth image stream visualized as a 3D point-cloud, (3) the thermal image, and (4) the fusion between the
3D point-cloud and the thermal images which results in a thermal point-cloud that we record over time. This system provides the
foundation we use to perform both the volumetric reconstruction of the patients posture and the main system for extracting the
skeletal ground-truth measurements required for our training procedure. In Fig. 1, we provide a complete overview of our experi-
mental Sleep Lab setup used for both training and monitoring occluded skeletal postures.

2. Related work

Skeletal posture estimation from imaging devices is a field within computer vision that has received an extensive amount of
attention for several years since the introduction of widely-available depth-imaging devices. Through the development of several
devices that support high-resolution depth imaging, depth-based skeletal estimation has become a robust and mature method of
providing joint and bone-based skeletal estimations. Notable contributions to this work include both generations of the Microsoft
Kinect, associated depth-based skeletal tracking algorithms, and the extensive set of work aimed at improving these skeletal esti-
mations. While these existing techniques are well explored and reliable for most applications, they are inherently ineffective for
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Thermal-depth Fusion Experimental Setup (hardware) Experimental Setup (monitoring + software)

Fig. 1. Experimental setup for detecting occluded skeletal joints that define a patient's posture with occlusions within a standard sleep-study. The
prototype design (left) incorporates two devices: (1) a time-of-flight depth camera (Microsoft Kinect2) and (2) a thermal camera (FLIR C2), both
mounted to a fixed device rail (center). This results in the fusion between these imaging modalities due to the overlapping Field-Of-View (FOV) from
each device. The image streams are then fused into a thermal point-cloud within our software solution (right).
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Fig. 2. Skeletal posture estimations techniques using the Microsoft Kinect (a, ¢), and improvements (b, d) by Ye et al. (2011). These methods have
been developed into systems that identify skeletal postures under occluding surfaces (blankets) using physical simulation (center) to infer depth
feature signature patterns generated from occluding surfaces (Achilles et al., 2016) to estimate skeletal postures (right).

posture estimations that include visual occlusions like those encountered in sleep-based studies. To assess existing methods and their
inherent limitations within this application domain, we look at the most recent forms of depth-based skeletal estimation and look for
related methods that attempt to tackle the problem of occluded posture estimation using these techniques.

2.1. Depth-based skeletal estimation

The pioneer work for depth-based skeletal estimation from a single depth image for the Microsoft Kinect devices (Shotton et al.,
2013; Ye et al., 2011) utilized a combination of both depth-image body-segment feature recognition and training through Random
Decision Forests (RDFs) to rapidly identify depth pixel information and their contribution to known skeletal joints and hand gestures,
as introduced with the Kinect2. Modern skeletal estimation techniques are built around a similar premise and utilize an extensive
number of newer devices that provide high-resolution depth images. These techniques utilize temporal correspondence, feature
extraction, and extensive training sets to quickly and robustly identify key regions within a human figure that correlate to a fixed
number of joint positions that form a skeletal structure of the user. The images in Fig. 2 provide an illustration of the most common
skeletal configurations and associated estimation results from recent techniques. These techniques have become increasingly robust
and now provide highly accurate joint estimations within the well established constraints of these approaches. These constraints
minimize assumptions about the free movement of the human skeleton and provide reasonable joint movements. However, these
techniques also provide a set of assumptions including: background data can be quickly segmented (removed), the user is relatively
isolated within the depth image, and most importantly - the line of sight between the device and the user is not obstructed. These
assumptions are integrated into the foundation of these approaches, therefore the use of these methods within sleep-based studies
with occluding materials covering the patient are not valid under these constraints.

2.2. Occluded skeletal posture estimation

Recent vision-based techniques have introduced an alternative method that relies on a surface prior to allow skeletal posture
estimations that are recorded before the occluding medium is introduced (Achilles et al., 2016). This surface prior (depth-image) is
then used as a collision model within a physical simulation of a cloth that represents the occluding surface to provide an approx-
imation of what the underlying posture would look like given the simulated cloth model occluding the patient. However, there are
several potential problems with this approach: (1) the simulated cloth under gravity model may not provide realistic behaviors such
as folding and tucking, (2) body movement may modify the blanket for instances not covered in the simulation, and (3) the patient
may move and create additional wrinkles, folds, layering, self-collisions, and complex interactions between the patient and the cloth
model. While this method provides a good alternative for depth-imaging approaches, it is difficult to ensure that the simulated cloth is
consistent with real-world deformation patterns and cannot emulate complex patent to blanket interactions that may be observed.

Alternative methods derived from signal and image processing (Liu and Payandeh, 2016) have also been introduced in an attempt
to identify a patient's posture based on the spatial domain patterns that can be extracted by processing cross-sections of the bed
surface using the Fast Fourier Transform (FFT). The objective of this approach is to identify the spatial patterns common to most
postures and then identify them based on these traits. However, similar to other depth imaging approaches, the surface data provided
through a surface point-cloud does not contain accurate information about the posture of the patient within the occluded volume.
Therefore in occluded applications, the high level of surface ambiguities makes depth-based techniques ill-suited for accurately
estimating skeletal joint positions, even for this form of signal processing.

2.3. . Thermal image posture estimation

The use of thermal imaging for skeletal posture estimation has not been extensively utilized due to the fact that thermal images do not
provide a good estimate of the spatial coordinates required for skeletal joints, with the exception of 2D movement tracking. Early work
presented in Iwasawa et al. (1998) developed a simple algorithm for detecting the skeletal structure within a two-dimensional image, but
the applications of this method are limited to the 2D domain and cannot be utilized to form a 3D spatial representation of a patient's
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posture. Recently, there has been limited exploration into thermal-based skeletal estimation, however the technique has been used for
detecting (Riaz et al., 2013) and tracking generalized human behaviors (Yasuda et al., 2004; Zhang et al., 2010) which include movement
and very generic postures such as walking, lying, and sitting. However, none of these techniques have explored combining depth and
thermal imaging to improve skeletal estimates especially in cases where occlusion makes depth-only methods invalid. Additionally, many
approaches, including ours, use low-cost commercially available thermal cameras, making the resolution of the images limited. In these
existing techniques, this reduces the image quality and greatly increases the difficulty of extracting accurate joint estimates simply due to
the hardware limitations. Therefore, to address the introduction of an occluding material within skeletal estimates, we fuse both thermal
and depth imaging to provide a means of generating a thermal model of the patient's volume enclosed by the occluding medium by
leveraging high-resolution depth images to provide spatial and visual fidelity to lower resolution thermal images.

3. Occluded posture thermal challenges

The extensive depth of research used to provide reliable techniques for accurate joint estimates using single depth images has
generated a significant number of solutions for posture estimation in occlusion-free applications for skeletal movement tracking with
high degrees of freedom. With the introduction of occlusion mediums, the addition of thermal imaging to assist in the identification of
a patient's skeletal posture provides an intuitive extension of these techniques. However, with the introduction of markerless skeletal
posture estimation and visual occlusions, thermal imaging retains an extensive set of challenges due to heat propagation, contact
regions, and the potential occlusion materials that can be used to block a patient's skeletal posture. In this section we enumerate
several primary challenges associated with thermal imaging that greatly complicate thermal-based skeletal estimation and explore
how the fusion between this modality and depth-imaging can alleviate these potential problems.

3.1. Occluded ground-truth estimation

One of the prominent challenges with establishing an algorithm for occluded posture estimation stems from the inability of
current vision-based approaches to define an accurate ground-truth of an occluded skeletal posture. This is due to the use of imaging
wavelengths that are blocked by specific wavelength opaque surfaces which makes most vision-based techniques inadequate for
visualizing internal structures occluded by surface materials. This includes both the visible spectrum of color images and the short
infrared wavelengths used for depth imaging. Therefore, for skeletal posture estimation with surface occlusions, the process of
determining a ground-truth estimation of the patient's posture is in most instances difficult or completely intangible. This eliminates
the possibility of using traditional ground-truth tracking techniques, like those used within common motion-capture studios, to
establish large sets of skeletal training data that are used to provide the critical link between depth image features and joint position
estimates. Therefore we look towards how we can fuse thermal and depth imaging and provide a new method inspired by these
traditional techniques to establish a ground-truth estimate that can be directly measured from occluded joint positions.

3.2. Contact regions

The thermal conductivity exhibited by a material near a heat emitting source can be simplified and modeled using two different
thermal transfer states: (1) a non-contact state which defines a scalar distance that separates the source and the receiving material
and (2) a contact state where heat transfer is greatly increased due to the thermal contact conductance between the two materials. In
the first case, thermal conductance is reduced and defined as a function of the distance between the emitting surface and the receiving
material which depends on the ambient temperature, temperature of the two objects, and the material composition of both objects.
This is true for the second case, however due to the contact surface, the thermal conduction is greatly increased, leading to a
substantial increase in thermal intensity. Therefore to accurately describe an object's thermal contacts, the shape of its surface, and
emission intensity from a thermal image, the physical properties of all materials must be precisely modeled, which is impractical for
clinical applications.

3.3. Limb occlusions

As with all single perspective depth-based posture estimations, occlusions made by specific poses incur constraints on the ac-
curacy of the skeletal posture estimation due to limbs occluding other joints within the depth image. Within depth imaging this is
handled by introducing joint states that identify when a joint position is accurately known, or if the joint position is not directly
known, but can still be inferred. However, with the introduction of an occluding material tent-effect, in which the occluding medium
creates an occlusion area larger than a traditional limb occlusion, this effect will contribute to a much more significant loss of
information about other skeletal joints due to the increased occlusion volume introduced by the shadow of the occluded material
within the depth image. Since this phenomena occurs in combination with large contact regions and large depth extrusions, these
instances can be detected using thermal-depth fusion.

3.4. . Intractable heat-to-surface modeling

Identifying and generating an accurate surface model exclusively through the use of thermal imaging is an under-determined
inverse physics problem. This is because there is inherently an ambiguous relationship between the measured thermal intensity and
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Fig. 3. Skeletal posture estimation challenges associated with thermal imaging. The image in (a) illustrates an ideal non-occluded thermal image but
illustrates non-uniform thermal distribution of a patient's thermal signature, (b) provides an illustration of heat marks left by a patient's arm
movements, (c) illustrates thermal ambiguities of the patient during motion, (d) illustrates the patient's residual heat left when the patient has been
removed, and (e) illustrates ambiguous movement where the posture may be interpreted as multiple skeletal components.

the emission surface that cannot be directly reconstructed. Thus depth-imaging remains a prominent requirement for spatial models
of thermal distributions.

3.5. Non-uniform heat distributions

The thermal signature of the human body has a substantial natural variation across the surface of the skin that contributes to non-
uniform heat distributions. The premise of any thermal-based approach to skeletal estimation assumes that the emission of thermal
energy from the surface of the skin is sufficient to separate from both the background and other materials near and in contact with the
skin; however due to the non-uniform distribution of heat through different skin regions and material coverage, thermal intensities
are ambiguous between the patient's skin and surrounding materials.

3.6. Movement and residual heat

As a challenge uniquely associated with thermal imaging, thermal contact and residual heat play a critical role in the image
analysis of patient postures. During the movement event and for a short period of time after the movement, thermal intensities may
indicate false positives in posture estimations due to residual heat. Depending on the contact surface material properties and the
duration of the contact, residual thermal signatures can generate significant misleading features that can be mistakenly identified as
part of the patients posture. One prominent example of this problem is illustrated in Fig. 3 (b), where the thermal image depicts four
arms instead of two. While this seems ambiguous, the differentiation between the correct arm positions and their previous location
(shown by their residual heat), is directly solved by analyzing depth features at these locations.

3.7. Multi-layer occlusions

The apparent thermal distribution of an occluded surface is directly influenced by both the distance and temperature of the
emitting surface, however the number of occluding material layers between the thermal device and the emission source introduces
additional erroneous ambiguities. As materials are placed on the patient, including clothes and bedding, the materials may overlap in
unpredictable ways leading to sharp distinct features within the thermal image.

3.8. Occlusion material

Material properties of the occluding surface greatly dictate the thermal distribution and resulting surface signature that can be
identified by the thermal camera. Depending on the material type, thickness, and heat propagation characteristics of the material,
this can play a significant role within how accurately a posture can be identified and how long the thermal signature remains as
residual heat.

4, Method overview

To provide a reliable means of estimating occluded skeletal postures in any vision-based technique, the proposed method must
address the challenges presented by the data acquisition methods used create a solid foundation for performing accurate joint
estimations. An immediate extension to current depth-based skeletal estimation techniques is the integration of thermal data to both
identify and refine potential joint locations by analyzing thermally intense regions of the body and limiting ambiguities within the
depth image to provide better joint estimates within the occluded region. However, while this approach of combining both depth and
thermal image information alleviates some of the challenges and ambiguities associated with depth-imaging, it also incurs the
numerous thermal challenges listed within Section 3. Therefore to provide a reliable posture estimation algorithm based on these
imaging methods, we mitigate the challenges introduced by each device by forming a new thermal-volumetric model of the patient's
body that can provide a robust foundation for thermal-based skeletal joint estimates.
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Fig. 4. Volumetric reconstruction of an ideal skeletal posture. The image in (a) illustrates a discrete approximation of the patient's volume. The
image in (b) provides an illustration of the mapping between a voxel representation (black dots) of this volumetric data and the ground-truth
skeletal estimate of the posture (illustrated as a set of joints and associated bones).

4.1. Thermal volumetric posture reconstruction

Volumetric reconstruction for posture estimation refers to the process of identifying and generating the extent and geometric
characteristics of the patient's volume within the loosely defined region constrained by a depth-surface. This occluded region within
the surface will be used to provide what we define as the posture-volume of the patient. This volume is strictly defined as the
continuous region under the occluding surface that contains both the patient and empty regions surrounding the patient that are
visually obscured. To define a posture estimate based on this volumetric model, we associate a fixed set of correlated skeletal joint
positions within the observed thermal distribution of this volume. This allows a skeletal estimate to be identified from a known
(trained) thermal distribution which represents the patient's posture under the occluding medium. Fig. 4 provides an overview of this
ideal posture model, the discrete volume approximation, and skeletal joint structure defined by this model.

This model shifts the foundation of the skeletal estimation from identifying isolated joints in the two-dimensional imaging domain
to a three-dimensional voxel model that describes both the volume of the occluded region containing the patient and thermal
distribution within this volume due to the heat radiated by the patient's skin. This form of modeling provides a complete 3D image of
the patient's posture within the occluded region as an identifiable thermal distribution. We then correlate these pre-defined joints
with our motion-tracking inspired ground-truth measurements that we collect during training from our thermal-joint suit shown in
Fig. 4 (c). This provides us with a direct correlation between ground-truth joints and their thermal distribution. This method could
also be directly used for skeletal tracking, however, heated elements within an insulated volume may cause safety concerns, tangled
wires or power sources are inconvenient (uncomfortable), and the non-contact complications from using this method directly limits
the appeal for a non-intrusive sleep study.

The development of the volumetric posture model is motivated from three primary observations based on patient thermal images:
(1) the process of identifying joint positions from thermal images projected onto the depth surface is highly unreliable due to contact
region ambiguities, layering, and non-uniform heat distributions, (2) intense thermal regions within the image are generated by both
joints and arbitrary locations on the patient's body, and (3) joints that have a separation distance between the patient's skin and the
occluding material may be visually and thermally occluded, but reside within this volume. Due to these reoccurring conditions that
are not well handled by existing methods, the proposed method is based on creating a correlation between the patient's thermal
distribution and associated skeletal posture. Based on this correlation, if the known skeletal joint positions are provided for the
observed distribution, we can estimate the patient's skeletal posture even when the subject is highly occluded, has several ambiguous
joint positions, or when skeletal joints cannot reliably inferred.

4.2. Algorithm overview

The premise of this approach is to reconstruct the unique volumetric thermal distribution of the patient and correlate this posture
signature with an associated set of joints that defines the patient's corresponding skeletal posture. The introduction of this process
provides a robust method of identifying skeletal estimates on volumetric data that contains unique thermal patterns that are more
reliable than depth features within a recorded point-cloud surface. Therefore, based on our ability to reliably reconstruct this thermal
distribution and associated skeletal structure, the resulting correlation is then used to populate a training model of discrete posture
variants that can be used to detect a patient's subsequent postures. A high-level overview of the thermal-depth fusion process used to
generate a volumetric thermal posture signature is defined in Fig. 5.

The core of our technique is based on four primary components that implement the flow-process illustrated in Fig. 5. This
includes: (1) the generation of the thermal depth cloud through the fusion of the depth and thermal imaging devices (thermal-depth
fusion), (2) the reconstruction of the patients posture using a voxel grid, (3) the propagation of the thermal values through this
volume from the occluding surface, and (4) the final voxel representation of the heat distribution that is used for visualization and
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Fig. 5. Overview of the proposed approach for reconstructing the volumetric thermal data that contributes to the occluded skeletal posture esti-
mation. This includes the generation of the volumetric data with the skeletal ground-truth for training and the real-time data with the provided head
joint used during the occluded posture estimation process.

classification of the patient's posture. Unlike existing methods, this data is not simulated, but collected in real-time.

1. Thermal Cloud Generation (Thermal + Depth Fusion) Stereoscopic camera calibration has been implemented for depth and
thermal imaging devices using the standard checkerboard method. This method has been extended to incorporate the addition of
heat elements that correspond to the visible checkerboard pattern to identify the the intrinsics of the thermal (van Baar et al.,
2012) camera and their relational mapping an associated depth image. We fuse these image modalities to generate a thermal
surface point-cloud that contains the occluding surface and its thermal distribution.

2. Posture Volume Reconstruction (Sphere-packing) The posture volume is defined as the the region occupied by the patient
under the occlusion surface above the background surface (or bed surface). This occlusion surface is defined by the generated
thermal-depth fusion surface and the bed surface is obtained from an initial scan (of the bed surface) without the patient present
to define the back of the volume. The construction of this volume greatly reduces the skeletal joint search space and provides a
high resolution approximation of the posture based on the thermal distribution.

3. Surface Heat Propagation (Thermal Extended Gaussian Images) From the thermal measurements of the occlusion surface,
heat values are propagated into the posture volume. In this domain, the heat source is known (the patient), so it is assumed that
within the volume, the thermal values increase. While this is not uniformly true, we use this heuristic to propagate heat values
through the scalar field that defines the volumetric voxel grid of the posture.

4. Volumetric Heat Distribution (Thermal Voxel Grid) This scalar field provides a dense thermal representation of the patient's
posture based on the heat propagation from the occlusion surface. This visualization is used as the basis for establishing a
potential field that defines the thermal distribution of the patients posture within the volume.

This four stage process is then divided into two primary directions: (1) training for the correlation between the skeletal ground-
truth and the associated thermal distribution and (2) the identification of input distributions to retrieve the patient's associated
skeletal posture. To find the correlation between the ground-truth skeletal posture and its associated thermal distribution, we capture
the thermal signature of our thermal-joints, label them according to their corresponding joint name, and then automatically generate
the pre-defined skeletal structure. This process, repeated for various conditions, defines the training component of our estimation
method. This procedure generates both the skeletal configuration and its associated thermal distribution. To then retrieve a skeletal
estimate for a thermal volume data stream, the given thermal distribution at the current time can classified to extensively prune the
search space of potential thermal distribution matches to provide the most accurate skeletal match.

5. Devices and data acquisition

To facilitate a practical hardware prototype that incorporates these two imaging techniques, the design incorporates two low-cost
devices that provide reasonable image resolutions for sleep-based posture estimation within a controlled environment. Our prototype
includes the Microsoft Kinect2 for depth imaging and the Flir C2 hand-held thermal imaging camera.

5.1. Thermal-depth fusion prototype

The Kinect2 provides a depth-image with a resolution of 512 X 424 and the C2 contains an 80 X 60 thermal image sensor array
which is up-sampled (bicubic) to an image size of 320 x 240. This process does not drastically effect the quality of the thermal image
due to the physical properties of the heat distribution as it propagates through the surface over time. To configure the overlapping
viewable regions provided by each device, we have developed a single aluminum bracket to mount the two devices into a simple
prototype as shown in Fig. 6. Based on the point-cloud data provided from the Kinect2 depth-image, we integrate the thermal
intensity at each point from the corresponding point within the up-sampled thermal image provided by the C2. This calibration is
then used to generate the thermal-cloud of the volume enclosing the patient due to the occluding material.

The alignment of the images provided by these devices requires further image processing due to the vastly different field-of-view
(FOV) provided by each device. Therefore we model the alignment transformation of the two camera based on a simple linear
transformation as a function of the distance to the bed surface. Additionally, due to the limited FOV of the C2 device, we rotated the
device by 90[deg] to provide the largest overlapping field-of-view possible. From this configuration we can sample several data
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Fig. 6. Thermal posture device prototype. The two devices (Kinect2, C2) are mounted with a fixed alignment provided by the bracket shown in (a).
The images in (b-d) illustrate the mount attached to the bed rail with both devices.

streams concurrently as shown in Fig. 7 to form a high-resolution thermal point-cloud. This includes the non-covered patient in (a-b)
with both the infrared image in (a) and the depth image with estimated surface normals in (b). The same images are then shown for
(c-d) with an occluding medium. Here, the posture is the same as the images above, however it is much more difficult to discern the
exact position of the limb joints due to the uniform depth surface. Using a similar setup, we introduce thermal imaging (e-f) to
illustrate the visibility of the limb joint positions even when the occluding medium is present. With the combination of this thermal
data with the 3D point-cloud, the images in (g-h) provide an explicit illustration of the occluding material, the thermal distribution of
the overall posture, and the penetration of the thermal signature related to the joints within the left arm, even when the occluding
material is present.

5.2. Occluded skeletal estimation ground truth

One of the prominent challenges introduced with occluded skeletal posture estimation is the inability of most vision-based
techniques to provide a reliable ground-truth estimation of the patient's skeletal posture while the occluding material is present. For
imaging techniques, this is a direct result of the interference or complete occlusion of the patient's posture due to the external surface
properties of the material that are obtained through using limited regions of the electromagnetic spectrum (such as the visible or
infrared wavelengths). The reflection based nature of these techniques minimizes the ability to correctly infer surface features that
correctly contribute to the patient's occluded posture. While other methods utilizing these reflection-based imaging techniques have
introduced interesting ground-truth workarounds for approximating the surface behavior of the occluding surface (Achilles et al.,
2016), this remains a significant challenge in occluded posture estimation methodologies and evaluation models. To address this
fundamental challenge in occluded posture recognition, we introduce a new thermal-based skeletal ground-truth derived from
common motion-capture systems that models individual joints with visible thermal markers as shown in Fig. 8.

As with common motion capture systems, this simple thermal marker system is designed from a standard form-fitting suit
equipped with 9 solid nickel spheres with an approximate diameter of 3.0 [cm] that match the pre-defined skeletal configuration.
These solid metal spheres are attached to the suit at various locations that correspond to the joint positions of the patient. During the
training process, these markers emulate the methodology of tracking joints by increasing their thermal intensity as an external heat
source. Within our current prototype, we used passive heat sources such as briefly heating up the markers and then attaching them to
the suit. An automated alternative is to provide an active heat source through a current source, however this method would incur
additional safety precautions. This method provides a highly-accurate method for providing a ground-truth of the patient's posture,
but also requires a manual configuration. The image provided in Fig. 4 shows the simple design of the training suit with the attached
solid nickel spheres used in the training process.

Fig. 7. Thermal surface point-cloud acquisition. The sequence of images illustrate the data collected from both the Microsoft Kinect2 and Flir C2
thermal devices to obtain thermal and surface fused point-cloud data. The images (a-d left) illustrate the collection of the infrared and depth surfaces
for both non-occluded and occluded views of the patient. The images (a-b center) illustrate thermal only and thermal-depth fusion result of our
technique used to generate the volumetric model of the patient. Images (a-d right) illustrate the difficulty of identifying posture within an infrared
(depth) image and the result of using thermal skeletal markers to clearly identify joint positions.
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Fig. 8. Thermal posture ground-truth. The image sequence illustrates the thermal ground-truth of the skeletal joints provided by the heat dis-
tribution of the suit conduction points. These fixed attachments irradiate heat that corresponds to the joint pattern required for the pre-defined
skeletal joints and can identified in 3D space due to their position within the thermal point-cloud.

The result of the thermal skeletal ground-truth is the product of a simple adaptive thresholding and a connected-component
algorithm that identifies the thermally intense regions of the spheres within the image. In the resulting thermal-cloud, the spheres
appear as small white regions indicating the locations of the joint positions, as shown in Fig. 8. For each grouping of points belonging
to a joint, the unique joint position is calculated as the center of mass of this cluster. For labeling we employ a simple a semi-
automated tool to assist in the identification of the skeletal joints for the training data. Adjacencies can then be generated for the
required structure and can account for missing joints. Based on the provided adjacencies, the system will automatically generate the
configuration required for the ground-truth posture.

6. Volumetric thermal modeling

Sleep-study occluded posture estimation offers a large reduction in both the degrees of freedom in both the patients movement
and the volumetric region they occupy. Based on the assumption that the patient resides at rest within a limited spatial region and the
occluding surface is covering the patient, this region of interest is easy to identify and model as a continuous enclosed thermal
volume. This is achieved through the use of several assertions about the experimental setup: the patient resides within the bounded
region and is supported by a rest surface, the occluding surface is supported by the patients body and does not penetrate through the
volume of the body, the human body is contiguous, and the patient's face is visible and unobstructed. In this section we build on these
assumptions to formulate the three-stage process of building the patient's posture volume and generating the associated volumetric
model: (1) volume enclosure, (2) sphere hierarchy generation, and (3) the generation of a voxel grid that represents the thermal
distribution of the patient's posture. This process and the resulting thermal distribution that models the thermal posture of the patient
are shown in Fig. 9.

6.1. Posture volume enclosure

To begin the process of imposing constraints on joint locations within the occluded region, we enclose the volume between the
recorded thermal-depth fusion surface and the known (depth-measured) background plane of the surface. Since the enclosed volume
is a direct function of the occluded surface model and the bed surface, we assume that the contact surface of the bed can be obtained
through a preliminary scan of the bed surface taken while patient is not present and the occluded surface model can be recorded in
real-time. This encloses the volume of interest between these two surfaces (the bed surface and the occluding surface) that we
populate with a scalar field generated through a volumetric sphere hierarchy.

6.2. Volumetric sphere hierarchy

To model the internal volume of the patient behind an occluded region, we introduce a simple and robust method for populating
the area using discrete unit spheres through a methodology derived from simple sphere-packing. Generating this volume requires an
enclosed region that is defined by the point-cloud data provided by the imaging devices included in the proposed prototype. From the
enclosed region occupied by the patient defined by the beds surface and the recorded depth image, the volumetric reconstruction

Fig. 9. Volumetric thermal model process overview. The image in (a) illustrates the raw thermal cloud, (b) illustrates the enclosed region of this
cloud, (c) illustrates the generated internal thermal distribution of the patient, and (d) provides the result of both the reconstruction and the thermal
propagation through the enclosed volume, providing the thermal distribution in (d).
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process used to define the occluded volume is derived from the 3D grid-based sphere-packing algorithm used to generate a spherical
hierarchy.

This methodology is used as the basis of the volume reconstruction algorithm due to three assertions of the cloud that en-
capsulates volume of the patient: (1) the volume may be concave and contain complex internal structures and (2) the internal region
may contain holes or regions that further reduce the patients potential joint positions due to volumes that are too small to occupy the
associated joint, and (3) both surfaces sufficiently enclose the volume leaving no holes or gaps within the volumes surface. Sphere-
packing is a simple algorithm that propagates unit spheres through a hollow region until some boundary conditions are met. This is
based on three primary components commonly defined for sphere-packing: (1) the start position of the propagation, (2) the method of
propagation, and (3) the boundary conditions must be defined for each sphere added to the volume. For (1), the starting position of
the propagation is defined as the center of mass of the patients head. From our assertion that the patients head will always be
uncovered, we can easily segment and identify the patients head within the thermal image due to the heat intensity of the patients
face. The method of propagation (2) is derived from a bread-first search pattern. For the boundary conditions (3) of the propagation,
we consider two primary boundaries: the point-cloud that encloses the region and regions that have very limited thermal intensities.
This limits the propagation of the volume to regions that contribute to the patient's posture. Most importantly, the structure of the
hierarchy provides context to how the volume is formed from the head joint. Shallow regions within the hierarchy represent joints
that are closer to the head joint while deep regions within the hierarchy have a higher probability of representing limb or spine joints.

While this method provides an effective means of finding the continuous volumetric regions bound by complex surfaces, it has
two main drawbacks: (1) the performance of this approach is equivalent to breadth-first search and does not scale well to a parallel
algorithm, and (2) if there is any hole within the surface, the propagation could potentially diverge, which invalidates the data. To
address these potential problems and introduce a close approximation of this algorithm we have also implemented a grid-based
approach. This approach simply computes the scalar field between the two surfaces based on the dimensions of the original depth and
thermal image sources. This technique is extremely simple and has a trivial parallel structure. This method also scales well to
accommodate arbitrary body sizes within the reconstructed volume and does not impose a large additional overhead for larger body
volumes.

6.3. Thermal Extended Gaussian Images (TEGI)

Extended Gaussian Images (EGIs) represent a mapping of surface normals of an object onto a unit sphere through a simple
projection. This formulation provides an alternative form of representing complex geometric structures using a simplified form while
maintaining the original geometric distribution. To reduce the resolution of the volumetric data provided by the thermal-cloud, we
introduce the use of Thermal Extended Gaussian Images (TEGIs) to represent a projection of localized thermal intensities from the
recorded thermal images onto the surfaces of the unit spheres within the sphere hierarchy.

TEGIs are introduced to establish a transfer function between the known recorded surface temperatures and the volumetric data
represented by the sphere hierarchy within the occluded region. This function represents a conversion of the 2D thermal data residing
within the surface lattice to a volumetric representation of the transferred heat and an estimate of the source direction. This allows
the thermal data of the recorded surface point-cloud to be transfered to the newly generated internal volume that represents the
patients potential posture constraints. Based on this model, TEGIs are used to represent both thermal intensity and directionality of
the observed thermal distribution.

Each surface sphere within the hierarchy contains an TEGI that is parametrized by two characteristic features based on the on the
sample points residing within the local neighborhood (2r) of the sphere: (1) the thermal intensity t and (2) the Euclidean distance d
between the contributing point and the sphere. This provides a parameterized distribution that models the local heat distribution
across the surface of the recorded thermal cloud as a 2D Gaussian function TEGI (t, d):

TEGI(t, d) = atel=x*/26D]+[-y*/2(Bd)] )

Where the parametrization of the standard Gaussian distribution is defined by the thermal contribution t and scaled by a scalar
thermal multiplier « provided by the thermal image. The distribution of the function is then modified by modeling o2 as the Euclidean
distance between the point d and the center of the sphere with a distance scalar multiplier 8 where the value for the scalar multiplier
B is defined by the device distance to the surface of the patient.

The primary requirement of generating a TEGI is a procedure for projecting and mapping thermal points from the thermal cloud
onto the surface of a unit sphere. To achieve this, a discrete form of the unit sphere is divided into discrete regions following the
approach defined in Makadia et al. (2006) for automated point-cloud alignment. Then for each point within the local neighborhood,
the point is projected onto the surface of the sphere and then assigned a 2D region index within the TEGI. This index will be used to
identify the peak of the Gaussian distribution that will be added to the discrete surface representation of the sphere. Since the
resolution of the Gaussian is discretized on the surface of the sphere, we sample the continuous parameterized Gaussian function at a
fixed interval and allow the distributions to wrap around the surface of the sphere. The image in Fig. 10 provides an illustration of
how points are projected to the surface of a unit sphere and then used to generate the positions of the Gaussian distributions within
the surface image of the sphere.

The contribution of multiple points within the same local neighborhood is accounted for through the addition of several different
Gaussian distributions to the surface of the sphere, each with its own parameterization derived from its relative position to the sphere
and its thermal intensity. The resulting TEGI is then defined as the sum of the contributions from all local points within the defined
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Fig. 10. Extended Gaussian Image (EGI) spherical mapping (Makadia et al., 2006) of thermal points to a volumetric region (a). For each thermal
point within the recorded thermal point-cloud, the projection of the point will produce a location on the mapped unit sphere that will reside within a
bounded surface region (b). The intensity of these projected thermal distributions then provide the volumetric representation of the heat transfer
from the thermal point-cloud to the occluded volume.

search radius. This defines the total thermal contribution of sphere .7 to the volume for the set of points within the spheres local
neighborhood ./
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Geometrically, the contribution of each points thermal intensity to the surface of the sphere also incorporates the directionality of
the thermal intensity of the point in the direction of the sphere. This provides a rough estimate as to the direction of the source of the
thermal reading identified at the surface point. While this approximation of the heat transfer function does not provide an accurate
model of the inverse heat transfer problem, it provides an effective means for estimating the inverse propagation of the heat measured
at the recorded depth-surface to define the thermal signature of the volume.

These TEGIs are then evaluated for each sphere in the spherical hierarchy that reside within the surface of the thermal cloud. The
resulting thermal intensity of each sphere is then used as the seed for propagating the observed heat through the patient's posture
volume. These thermal values are then used generate a three-dimensional voxel model of the patients heat distribution.

6.4. Thermal voxel grids

To integrate the thermal contribution of each TEGI within the constructed sphere hierarchy, the grid-based nature of the pro-
pagation algorithm is used to populate a scalar field of the thermal values into a voxel grid. This voxel grid provides the thermal
distribution of the internal volume of the patient used to represent the thermal distribution unique to a specific posture. This
distribution is then used to represent the patient's posture as a 3D image that can be classified based on a pre-trained set of postures

Fig. 11. Skeletal posture estimation results for six standard sleeping postures. The first image in each sequence provides the ground-truth skeletal
posture with superimposed skeletal joints, followed by the middle image that illustrates the thermal distribution used to obtain the trained skeletal
posture rendered in the last image of each sequence. This process illustrates both the volumetric reconstruction and the posture classification result
used to identify the six postures.
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that contain associated skeletal joint positions. The ground-truth skeletal joint positions, volumetric reconstruction of the patient's
posture, and the resulting skeletal posture classification is generated from this method are shown in Fig. 11. While the accuracy of
some skeletal configurations are limited by the ground-truth skeletal joint locations, we still obtain reasonable classifications of the
joint positions for posture instances that have completely occluded joints when the training suit is not included. Therefore, we
validate the use of the thermal distribution as a classifier for occluded skeletal posture estimation.

7. Thermal skeletal volumetric training

The underlying correlation between volumetric thermal distributions and skeletal joint positions used to formulate our posture
estimation is defined by two primary factors: (1) the skeletal ground-truth of a patients posture and (2) the thermal distribution of the
patients volume within the occluded region. Together, these two components form the training and identification data used to
estimate the occluded skeletal posture of the patient within an occluded region. There are several types of training methodologies and
models that have been designed for three-dimensional medical image classification. Of these methods, Convolutional Neural Network
(CNNs) (Krizhevsky et al., 2017) and Deep Neural Networks (DNNs) (Krizhevsky et al., 2017) are the most commonly used methods
for identifying complex structures within 3D images. In the proposed method, we have selected a feed-forward CNN-based network
structure to handle the higher dimensionality of the 3D thermal voxel grid we generated within Section 6. This is due to the dense
representation of the patient's thermal distribution rather than a feature-based estimation which would better suit a DNN-based
method. Therefore we allow the CNN to generate features through sequential filters that identify thermal-specific classification
metrics. In our method we implement CNN with 4 fully-connected layers with rectified linear units (ReLUs) which obtain results
faster than traditional tanh units (Lane et al., 2015). Additionally, since there is no analytical method to determine the optimal
number of convolutional layers for a given application, our network structure is determined empirically based on the correct
identification of posture states.

7.1. Constructing training models

Based on the three-dimensional representation of our training set that corresponds to a set of ground-truth skeletal estimates, we
construct the training models of our posture estimation based on individual thermal distributions and their associated skeletal joint
positions. Our training model relies on the construction of these components for each posture as they are provided to our CNN
implementation. Therefore to incorporate several individual postures, we repeat the reconstruction and the skeletal ground-truth
process for the most plausible postures that can be obtained within our limited spatial domain to provide an adequate recognition set.
From this set of potential postures, each dense thermal distribution can be used to represent a thermal distribution that identifies the
skeletal configuration and joint positions that are retrieved as part of the classification result. However, this distribution does not
uniquely identify this individual posture. This is due to several other factors that may lead to a different thermal distribution
representing the same posture including differences in the heat distribution, the depth of the occluding surface, and number of layers
between the patient and the thermal camera. In an attempt to address this problem and provide a reliable training set we record
several variants of the same postures with slight variations within the recorded thermal distribution. The objective of constructing the
training models using this method is to address variance in body temperature, distribution, and material coverage of the patient.

7.2. Neural network structure

For a given dense thermal distribution we formulate the feature value at location (i, j, h) in the k-th 3D feature map of I-th layer,
z,-lx,-,hyk is calculated by z,{,-yh‘k = w,iTx,{jyk + b}, where w} and b} are the weight vector and bias term of the k-th filter of the I-th layer
respectively, and xi’d« is the input patch centered at location (i, j) of the I-th layer. The kernel w} that generates the feature map Z;f;,;,k is
shared. This weight sharing mechanism can reduce the model complexity and make the network easier to train for our dense
volumetric model. We utilize standard activation function (ReLUs), which are desirable for multi-layer networks to detect nonlinear
features that may arise within our thermal volume. We let o denote the nonlinear (ReLUs) activation function. The activation value
ailJ,k of convolution feature z,-lJ-yk can be computed as ai{j,k = oc(zil‘iyk). The pooling layer is used to create the shift-invariance by
reducing the resolution of the feature maps that correlate to the thermal distribution of the posture. Each feature map of a pooling
layer is connected to its corresponding feature map of the preceding convolutional layer. We let p be the pooling function, for each 3D
feature map Ol;f;,;,ki yil‘}.’hk = p(oc,’,,,n,q,k), V (m, n, q) € Ry,. In that, R;;, is a local neighborhood around location (i, j, h) in the voxel grid.
The kernels in the 1st convolutional layer are designed to detect the edges and curves of the image generated by the thermal
propagation algorithm. The higher layers learn to encode more abstract features of the thermal distribution, allowing us to con-
solidate several convolutional and pooling layers together, to extract higher-level feature representations. In order to train our model,
we try to minimize the error associated with handling a variety of training sets that have minimal distinguishing factors between
volumetric models. We define N desired input-output relations x®, y; n € [1, ..,N], where x( is the n— th input data, y® is its
corresponding target label (the posture classification) and o™ is the output of the classification. The loss of CNN can be calculated as
follows: L = %ij:l 1(6; ymo™)y, By minimizing the loss function, we can find the best fitting set of parameters that allow us to
maximize cross-patient features to improve the reliability of retargeting existing training sets to new patients.
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7.3. Learning model implementation

We trained our classification network to detect 6 postures of the patient based on our generated thermal voxel grid images. The
classification label (one of six postures) is assigned for each thermal distribution. 60 thermal voxel grid images are used for training
while 180 other distributions have been used for testing. We avoid overfitting through two common methods: First, we apply Dropout
to randomly drop units (along with their connections) from the neural network during training (Srivastava et al., 2014), which
prevents neurons from co-adapting. Second, cross-correlation is applied to stop the training when the cross-validation error starts to
increase, leading to our termination condition. Additional convolutional layers generally yield better performance but as the per-
formance gain is reduced, we see diminishing returns in the training process. Therefore the number of connected layers required to
avoid overfitting is commonly defined as two as referred in Krizhevsky et al. (2017). We also applied early stopping mechanism to
make sure that the learning process is terminated when the network reaches to a certain status. The criteria to stop the training is as
following: (a) the training classification success rate has reached a sufficient classification percentage, (b) the learning process
reaches 500 iterations, or (c) the cross-entropy is lower than 0.005. This mechanism prevents the classifier from memorizing counter-
productive features from some samples, especially within low quality datasets.

8. Experimental results

Driving the experimental results of the proposed volumetric model for skeletal posture estimation, we identified several common
sleep postures that exhibit a wide variety of skeletal joint positions that form both partial and complete posture estimates due to the
visual occlusions introduced by the use of a standard blanket. Based on these common postures, our objective is to collect the skeletal
ground-truth, generate the associated thermal distribution, and then correlate this distribution with the recorded skeletal joint
positions for the patient's training set. From the generated training set, we can then estimate the patient's approximate skeletal
posture solely based on their current thermal distribution. This process is used to identify several standard sleep postures and their
associated skeletal joint positions for a patient visually occluded by a blanket within a standard bed. During these experiments we
tested with different standard blanket types (thin, thick, plush), and explored the accuracy of our training set based on two criteria:
(1) classification of an individuals posture using their own training set and (2) using an extended training set to classify the posture of
other individuals.

8.1. Standard posture estimation

The primary qualitative metric for both identifying a patient's posture and associated skeletal structure in occluded regions is
based on the ability to recognize the posture and the accuracy of the generated skeletal joints used to represent the patient. In these
experimental results, we perform a quantitative analysis for the accuracy of the of this method with respect to identifying the correct
posture based on the generated thermal distribution. The image sequences in Fig. 11 (a-f) illustrate six common postures along with
their associated ground-truth skeletal measurements as the first image within each sequence. The posture sequence for these ex-
periments is defined as: (a) face up + arms at the side, (b) face up + hands on chest, (c) face left + straight arms, (d) face left + bent
arms, (e) face right + straight arms, and (f) face right + bent arms. The second image within each sequence provides the rendered
thermal distribution of the patient based on the voxel data generated from the volumetric model. This data is then used to identify the
associated skeletal structure, as presented in the last image of each sequence. The images shown within Fig. 11 correlate to the
numerical classifications presented within Figs. 12 and 13.

8.2. Individualized posture estimation

As the primary quantitative metric of the volumetric distribution method, we measure the accuracy of the classification of the
patient's posture based on our six standard postures. For each posture, we collect the ground-truth and 40 variants (with subtle
movements) to provide a sufficient training set applicable to the limited spatial domain within which we can define a discrete posture
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Fig. 12. Individualized confusion matrix for the six identified postures. The correlation between the postures (as shown in Fig. 11), illustrates a
~ 90% classification accuracy. Similar postures incur misclassification due to changes in the patient's joint locations.
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Fig. 13. Confusion matrix illustrating the accuracy of the estimation using a set of multiple patients that did not contribute to the training of the
CNN used to perform the classification, this mitigates the requirement of per-patient training for similar body-types.

set. This results in 240 data sets in total, with 60 used for training and 180 data sets utilized for testing. The confusion matrix
illustrated in Fig. 12 shows the performance of the classification rate for the trained system. This process was conducted using the
training data of a single individual (height: 6[ft], weight: 150[lbs]), resulting in an average ~ 94.45% classification accuracy for
identifying an individuals posture based on their training set.

8.3. Cross-patient posture estimation

Individual body structure plays a significant role within posture estimation algorithms that do not use features, however based on
the generalized volumetric model of the body used to classify the identified skeletal posture, this method can also be loosely applied
across several patients with similar body volumes, obtaining reasonable results. The confusion matrix in Fig. 13 shows the classi-
fication results of the postures provided by three individuals based on a pre-trained posture set formed from a single individual, with
an average accuracy ~ 90.62% for identifying a secondary individuals posture based on the mismatched training set. This accuracy is
due to participants similar body volume characteristics, which are primarily defined by height and weight. All subjects varied from
5[ft] - 6[ft] and weigh 130[Ibs] - 180[lbs]. To improve the accuracy for other body volumes, additional training sets based on weight
and height could be implemented (in the same way as standard depth-based tracking methods).

8.4. Impact of training network structure

The introduction of additional layers within the CNN improves the performance of classification in both experiments, but we still
observe diminishing returns. We tested the CNN from 1 to 4 convolutional layers. The results are as following. (1) With 1 layer, the
accuracy obtained up to 77%, with 1.3 millions # of weights, the training time is approximate 5 minutes. With 2 layers, the accuracy
could go up to 88% with around 2 millions weights and 10 minutes of training. When the number of layers goes from 3 to 4, it will
takes around 15, 20 minutes, with accuracy of 92% to 96% using 2.8 to 3.2 millions number of weights, respectively.

9. Discussion

There are three primary considerations employed within the design of these results that are addressed within the current version
of this approach: (1) the training set is based on a discrete enumeration of skeletal postures, limiting the skeletal movement re-
solution, (2) the entire voxel volume is utilized with CNN generated features, so training is based on body volume size, and (3)
skeletal refinement algorithms for fine-grain position and orientation estimates have not been employed, thus the resulting skeletal
movement between enumerated training postures is discrete. These issues can be properly addressed through providing an extensive
training set of postures from numerous patients (as common with all depth-based skeletal tracking), feature localization and ex-
traction, and a joint refinement algorithm that compensates for the disparity between the trained skeletal structure and the patient's
actual joint positions, all of which are extensions of this method described within this section. The implemented volumetric re-
construction algorithm also provides a means of accurately modeling and visualizing the volumetric posture of a patient within an
occluded region without accurate joint estimations. This allows the this method to be applied to numerous additional medical
imaging applications such as patient monitoring and thermal distribution modeling for other various studies.

9.1. Ground-truth tracking

The introduction of the thermal-based motion tracking suit provides an effective means of identifying joint positions through the
occlusion medium, but also requires a laborious setup time. While this process is only required for the initial training and provides the
only way of generating a ground-truth estimate for this method, it still requires additional effort to heat and trace training images.
Within our implementation we chose to use an external thermal source to heat the metal ball joints due to the simplicity and safety of
the system. Although due to the ambient environment temperature, these joint markers naturally dissipate heat rapidly. Therefore, an
additional current-based system could induce heat through the joint markers to provide a more consistent heat source during the
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training process. This would greatly reduce the time and effort required to record thermal marker positions for skeletal joint posi-
tions. The only concern with this approach is that this would require generating heat from a voltage source that may pose potential
safety risks due to current or the overall thermal intensity of the markers under an occluding medium such as a blanket where
markers may overheat or become inconvenient to the patient.

9.2. Fine-grain joint position estimation

The proposed skeletal estimation algorithm provides a coarse-grained estimate of the joint positions according to the re-
constructed thermal distribution. This method allows us to accurately classify postures for sleep studies and provide detailed volu-
metric images of the patients body, but does not provide fine-grained joint orientation information. To address this, the introduction
of thermal-depth features can be used to improve fine-grained position estimations of joints. The challenge imposed by using this
standard form of feature classification is that within the thermal distribution, there remain a significant number of ambiguous cases
due to the thermal variance in the surface material and unreliable depth features that do not correspond to joint positions. However,
our proposed direction can be extended for the intersection between these two approaches by: (1) using the volumetric model to
greatly reduce the search space for potential joint positions and (2) utilizing thermal-depth features to estimate fine-grained joint
positions within this limited spatial domain. As in prior techniques feature-based techniques (Shotton et al., 2011), per-pixel features
can be created to identify class association within the thermal point-cloud.

9.3. Extended applications

The techniques proposed within our work can also potentially apply to other domains such as obstructive sleep apnea (Neill et al.,
1997; Cartwright, 1984), and breathing disorder detection by monitoring the fluctuation in the reconstructed thermal volume as it
corresponds to breathing behavior. The thermal-depth volumetric visualization technique we introduce can also be used to monitor
patient comfort and could be used to identify limb temperature in patients that have limited mobility, which is a critical indicator of
adequate circulation through the vascular system. This technique can also be used to help monitor sleep postures of post-surgical
patients (ulcer/sore) (Vanderwee et al., 2007) to ensure both proper circulation and that proper movement regiments are maintained
for long-term patients. Additional applications that utilize the volumetric component of the thermal-depth fusion can also be used in
several other domains for heat-flow visualization and non-destructive analysis.

9.4. Future work

Improvement of the skeletal estimates through fine-grain tracking, larger training sets, and an improved accuracy of training
body-type specific patients will address the challenges introduced in the current prototype system. In addition to the small data-set,
CNN overfitting, and errors in joint estimation based on body shape, the current training methods need to be streamlined and
expanded to incorporate additional body-independent features. In the current state, the proposed method and ground-truth technique
show promise for volumetric thermal modeling, but require extended training and clinical evaluation. Based on the core proposed
method of thermal-depth fusion, additional data-sets will assist with accuracy and reliability.

10. Conclusion

In this work we have introduced a novel approach for integrating thermal and depth imaging to form a volumetric representation
of a patient's posture to provide occluded skeletal joint estimates for pre-trained sleeping postures. We have built on similar existing
thermal-depth fusion techniques to provide a reliable thermal volume reconstruction process that provides an accurate high-re-
solution visualization of a patient's posture. By extending this approach to define a patient's unique thermal distribution, we have
introduced a new method for correlating a patient's unique heat signature with our motion-capture inspired ground-truth estimate of
the patient's skeletal posture for generating occluded joint positions. This result is illustrated through the application of our approach
to six pre-defined postures with an average classification accuracy of ~ 94.45% for an individual and an accuracy of ~ 90.62% for the
use of a trained network used for cross-patient posture estimations.
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