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A B S T R A C T   

Table tennis is a demanding sport in terms of motor skills, requiring precise time-critical postures and techniques 
for the player to excel. Therefore, it is a compelling case study for motor learning in Virtual Reality (VR). Though 
VR table tennis training applications have been used to study the learning process in VR, each has not fully 
explored the role of real-time feedback on motor learning, which is a fundamental component of real-life table 
tennis training. To address this, we have developed a training system that provides multi-modal training in
structions and real-time posture guidance feedback to assist beginner players in improving their playing out
comes. This system synthesizes a table tennis training environment by providing realistic visual and audio stimuli 
that includes a custom highly-accurate physics implementation of ball flight. An experimental group (n = 9) 
trained to learn correct posture and paddle handling for forehand and backhand drives. The results show that the 
participants improved significantly in terms of technique and ball return quality. This work is the first VR table 
tennis system that provides real-time posture feedback using a low-cost depth camera. Additionally, the par
ticipants’ significant improvement in playing posture over a short period of time shows the integral role of 
feedback in learning and further validates VR as an effective motor learning tool.   

1. Introduction 

VR’s ability to create rich and compelling experiences drives 
research in a variety of domains beyond entertainment. One such area of 
interest is the use of VR for training purposes. In particular, VR is well- 
suited to teach coordinated motor tasks, which is especially important in 
many sports. If a person intends to learn a new sport, physically per
forming the activity and performing it correctly will pave the way for 
better long term outcomes. Intuitively, a person who only gains theo
retical knowledge of a sport through reading and watching videos will 
generally be no match for players that have had professional instruction 
and numerous hours of practice. Developing the ability to play a new 
sport and retain that ability requires the repetitive coordination of the 
brain and muscles (Goodway et al., 2019). Out of all computerized 
training methods, VR is particularly suited to aid in developing these 
motor skills because it creates the sense of being “present” in the envi
ronment (Sanchez-Vives and Slater, 2005; Vignais et al., 2015). 

The power of VR for sports training is that it targets a player’s visual, 
auditory, and kinaesthetic learning styles by simulating sports activities 

from a first-person stereoscopic perspective, creating a sense of presence 
while helping the player to develop the perceptual and motor skills 
needed for the real sport (Allcoat and von Mühlenen, 2018; Bideau et al., 
2003; 2009; Vignais et al., 2015). In some cases, VR can make up for the 
absence of real equipment, an appropriate training environment, a 
knowledgeable trainer, or other players, and can additionally provide 
benefits over real training. VR can be used to dynamically tailor training 
sessions to the player’s unique needs, create controlled scenarios that 
are not possible in the real sport, and provide feedback during or after 
the training session. How well a motor task can be learned in VR is still 
an open question, complicated by hardware concerns such as the weight, 
field of view and refresh rate of the headset, and the fidelity of the visual, 
audio, and haptic experience. Yet it is evident that motor learning is 
possible in VR, as demonstrated by participants’ successful acquisition 
of motor skills in other VR sports studies (Checa and Bustillo, 2020; 
Miles et al., 2012). 

Though a variety of sports have been the subject of VR training 
research, one sport in particular that lends itself well to virtualization 
and academic study in VR training is table tennis, as evidenced by the 
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many VR training studies with table tennis as their central focus 
(Brunnett et al., 2006; Knoerlein et al., 2007; Li et al., 2010; Miles et al., 
2012; Raab et al., 2005; Todorov et al., 1997). From a practical imple
mentation standpoint, table tennis is a sport involving minimal haptic 
interactions where each player remains relatively in-place, making it a 
good fit for the spatial and haptic limitations of VR. The sport is visually 
demanding, requires optimal posture and precise time-critical move
ments, necessitates fast decision-making skills and involves an innate 
understanding of the mechanics of ball flight (Wong et al., 2020). 
Combined, these qualities make table tennis an ideal testbed to inves
tigate the learning of motor skills using VR, and it has indeed been used 
before in the study of VR motor learning (Raab et al., 2005; Todorov 
et al., 1997). 

A common limitation of the existing work is the lack of either 
informative or guidance feedback (Brunnett et al., 2006; Eleven: 
Table tennis vr, 2021; Li et al., 2010; Michalski et al., 2019), even 
though both feedback types are of high importance for motor learning 
(Salmoni et al., 1984). In other sports, motion capturing technology has 
been used for feedback and performance analysis (Bideau et al., 2009; 
Covaci et al., 2015; Göbel et al., 2010); however, it hasn’t been utilized 
for real-time posture training in table tennis. In existing table tennis 
simulations, the measurement of success is based on output, such as 
whether the ball successfully lands on the opposite side of the table and 
the speed of the ball. This standard of assessment fails to consider that 
posture and technique are key to improving these outcomes. While it is 
entirely possible to produce decent outputs with improper posture and 
techniques, an incorrect form may hamper the player’s ability to 
improve. Additionally, incorrectly practicing a technique may make that 
playing style a habit that is difficult to correct later (Goodway et al., 
2019). Posture training may not produce an immediate outcome of an 
increased number of balls on the other side of the net, but it is an integral 
component of learning fundamental motor skills that could promote 
more effective long-term outcomes. Professional trainers focus more on 
solidifying foundations that could be beneficial for broader skill sets 
(Barczyk-Pawelec et al., 2012; Raab et al., 2005; Wong et al., 2020). It is 
vital that table tennis be taught with an emphasis on posture and tech
nique instead of simply having the player attempt to get the ball over the 
net. Even though it is intuitive that correct posture has a crucial role in 
table tennis training, there has been no VR study that focuses on the 
impact of real-time posture training and feedback for motor skill 
training. Consequently, no VR table tennis system exists that offers 
real-time posture training feedback. 

To demonstrate the power of real-time posture feedback for fine- 
grained motor learning, we have developed a VR system that trains 
beginner players to perform basic table tennis maneuvers using a low- 
cost depth camera. The system provides a high-fidelity ball flight 
physics simulation and a real-time instruction-based training feedback 
scheme to replicate the real table tennis training environment condi
tions. Replicating the real training environment is intended to improve 
ecological validity, creating similar training conditions that lead to 
better motor skills. To achieve this goal, we partnered with a profes
sional player with over 25 years of experience who has won the Colo
rado State Table Tennis Championship and runs a training center. We 
utilized a Vicon motion capture system to accurately and smoothly re
cord his playing posture, which we used for the VR training system. We 
are going to refer to him as “the trainer” throughout this manuscript. 
The captured playing movements were then converted to an animated 
avatar in the Virtual Environment (VE) and used to teach correct playing 
postures. The posture training scheme offers the basic returning tech
niques of forehand and backhand drives, and increases trainees’ 
awareness of incorrect posture by presenting indicators and guiding 
them to perform the correct movements. The player (user) is presented 
with training instructions in the VE in multiple modalities, and the 
player’s pose is recorded using a Microsoft Kinect 2. The player’s posture 
at each time step is compared to the avatar’s posture. The similarities 
between the joint angles of both models are assessed and presented to 

the player to adjust their technique as needed. Additionally, the paddle 
pose and ball trajectory are also recorded to assess paddle handling 
techniques. 

We hypothesize that VR table tennis training with real-time posture 
feedback will produce postures and techniques that will be more aligned 
with the recorded movements of the trainer. If our system replicates the 
real-life training conditions accurately, the training system will teach 
motor skills effectively. This hypothesis is based on existing literature 
regarding learning and training in both real and VR, where training has 
shown improvement in skills in post-training analyses (How to play 
table tennis, 2017; Raab et al., 2005; Wong et al., 2020). For this study, 
we decided on five training sessions as the time frame of the experiment. 
This decision was based on consultation with the trainer and data from 
his center. The center’s data show that we can see the modification of 
motor skills towards that of a professional player after five sessions. Our 
study examines how well participants can learn forehand and backhand 
drive returning techniques and improve their playing posture, which is 
detailed in the following two secondary hypotheses:  

• H1: The player’s joint angles will improve significantly toward the 
joint angles of the gold standard movement model after five training 
sessions in VR.  

• H2: The player’s paddle control and ball returning angles will 
improve significantly after five training sessions in VR. 

Modifications in posture and returning technique, if improved, lead 
to improvements in ball return trajectories and speed. Therefore, the 
focus of this study is on posture, technique, and the returned balls’ 
trajectory and speed rather than the number of returned balls. Increasing 
the number of returned balls is more of a natural long-term outcome as 
they gain proper motor skills, not an immediate goal of this study. For 
this reason, we do not necessarily expect the number of returned balls to 
increase. 

We recruited nine individuals with no experience in table tennis for 
this study. Participants were trained in forehand and backhand drive 
return techniques using the VR table tennis system for five sessions (45 
minutes each). We compared skeleton joint angles and paddle control
ling data between the pre-training and post-training sessions. The results 
showed significant improvement in both posture and paddle handling 
techniques, which led to a significant ball trajectory improvement in 
terms of lower and faster ball returns. Both parametric paired-samples t- 
test and non-parametric Wilcoxon signed-rank test were used for sta
tistical analysis. This study’s results validate our system’s effectiveness 
in teaching and reinforcing certain skills necessary for table tennis in VR 
and show that real-time posture feedback activates motor learning. 
Additionally, we want to emphasize that the motor skills and ball 
returning techniques training in this study only apply to the virtual 
environment. The skill transfer from VR to real-world table tennis per
formance and VR training’s effectiveness compared to real training are 
out of this study’s scope. However, both goals are part of future work. 

The contributions of this study are twofold. On the technical side, our 
system offers a VR table tennis system that emphasizes correct posture 
and technique using real-time feedback that is a low-cost and beginner- 
friendly training platform. To our knowledge, no such system exists for 
table tennis training. On the fundamental side, this study demonstrates 
the motor learning process occurring in VR for a skill-based sport when 
the training is based on real-time posture feedback. This study opens the 
door for a more in-depth investigation into the motor learning process in 
VR, how we might accelerate the learning, and how we could apply it to 
other domains outside of sports. It also adds to the existing literature 
that supports the validity of VR for learning and training, specifically in 
table tennis. 

2. Related work 

The question of how VR can be used to enhance and augment the 
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motor learning process, as well as the efficacy of such training, has been 
investigated for a variety of sports such as dart throwing (Tirp et al., 
2015), juggling (Lammfromm and Gopher, 2011) rowing (Rauter et al., 
2013), archery (Göbel et al., 2010), baseball batting (Gray, 2017), tennis 
(Xu et al., 2009), and American football (Huang et al., 2015). VR has 
certain detriments, including limited ability to move about an envi
ronment and lack of tactile fidelity. Yet, VR possesses particular 
strengths as well, among which are the ability to “overtrain” an indi
vidual by making the task more difficult than in real life, the ability to 
customize scenarios to a player’s particular needs, and the ability to 
reproduce specific scenarios any number of times (Miles et al., 2012). 

Studies have been conducted to determine the key variables neces
sary for successful sports training for virtual environments and the real 
world. The fidelity of a virtual sport has been found to play a significant 
role in how effectively we can learn that sport in VR and how well the 
learned skills transfer to the real world. A study by Miles et al. states that 
the realism of the activity, and particularly the accuracy of the physics 
implementation for ball sports, needs to be high for the virtual envi
ronment to be effective (Miles et al., 2012). Studies have also deter
mined that variety plays a significant role in successful skill acquisition, 
and have highlighted the importance of both technical and tactical 
training, not just in isolation but also in combination (Checa and Bus
tillo, 2020; Miles et al., 2012; Raab et al., 2005). Feedback to the user, 
both in the form of informative feedback and guidance feedback, is a 
crucial part of training (Salmoni et al., 1984). The use of motion capture 
technologies for this purpose, as well as performance analysis, has been 
explored in multiple studies (Bideau et al., 2009; Covaci et al., 2015; 
Göbel et al., 2010). 

A study by Michalski et al. specifically investigated training transfer 
from VR table tennis to real-life table tennis and found significant 
improvement as a result of VR training (Michalski et al., 2019). This 
study is one of the most recent table tennis training systems in VR with a 
similar virtual environment to ours. However, the study measures suc
cess based on the number of the returned balls and doesn’t train the 
subjects to perform correct posture and return techniques as our system 
does. Another noteworthy study by Todorov et al. found good transfer 
from VR table tennis training to the real-life sport, and additionally 
investigated the fundamental aspects of the VR training environment 
that contribute to improved outcomes, finding that providing feedback 
to the players while training enhanced the learning process (Todorov 
et al., 1997). 

3. System design 

The VR Table Tennis (VRTT) system, shown in Fig. 1, is a VE 
developed with Unity Engine that offers realistic table tennis training 
through multi-modal instruction and continuous feedback on posture 
and technique. The player uses an HTC Vive headset and an HTC Vive 
racket with an HTC Vive tracker attached to it. The overall system 
(shown in Fig. 2(a)) consists of three main components. First, the physics 
simulation of ball flight and collision behaviors. Second, pre-recorded 
motion capture data of a professional player (the trainer) as a training 
model and gold standard measurement. Third, a depth camera capturing 
the trainee’s skeletal information in real-time for posture and technique 
analysis to provide feedback. The system trains participants to perform 
forehand and backhand drive ball return maneuvers correctly. Briefly, 
VRTT combines an accurate ball physics simulation and a real-time 
feedback system to provide a complete training platform. 

3.1. Physics simulation and validation 

We have developed our own ball flight physics simulation due to the 
limitations of the generic physics simulations (PhysX) provided by 
Unity. Table tennis is a fast game that requires accurate collisions and 
simulations of spin-related phenomena such as the Magnus effect, 
neither of which are provided in Unity. Therefore, we have developed 
our own physics simulations that overcome these limitations. The 
simulated physics provides accurate ball flight and rebounding off of the 
paddle and table. The ball loses energy during collisions, and spin is 
imparted to the ball from friction with collided surfaces. Air drag, 
gravity, and Magnus effect behave based on a realistic physics model. 

To validate our physics simulations, we designed an experiment to 
compare our model with real ball flight and collision behaviors. Fig. 3(a) 
shows the experimental design, which consists of a dotted sheet behind 
the table, a Huipang HP-07 ball launcher situated at the edge of the table 
closest to the sheet, and two cameras at two different locations, each 
running at 240FPS with 1080p resolution. To accurately measure ball 
speed, the camera located on the table records the ball as it moves in 
front of the dotted sheet, which is used as a physical reference with a 
known distance between points (2.74 cm). Similarly, the ball trajectory 
is tracked using the far camera’s view of the ball and dotted sheet. 

Balls with speeds varying from 4.39 m/s (speed A) to 6.46 m/s (speed 
B) were shot from the launcher and recorded by both cameras. For each 
case with a particular speed, the same scenario was repeated in the VE to 

Fig. 1. The virtual environment of the table tennis system is designed to resemble a real table tennis play area.  
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compare both the real and VR balls’ trajectory and collision behavior to 
show the simulation’s accuracy. We did not validate ball spin explicitly 
in this experiment; therefore, we reduced the spin to the minimum in the 
real launcher. The speed and spin are coupled in the launching machine; 
when both top-spin and side-spin are equal, the ball trajectory shows 
little to no deviation due to spin. If our launcher had accurate spin 
configurations, we could validate the spin as well. Nevertheless, we 
implemented the spin with known mathematical models, which provide 
crucial effects such as the Magnus effect that contributes to the ball 
trajectory. 

Fig. 3 (b) shows the similarity between the real ball trajectory and 
the ball generated in VR for the same speed. As shown, the trajectories of 
both are only shifted by a small amount after the rebound off of the 
table. To quantitatively compare the two trajectories, we used the Dy
namic Time Warping (DTW) approach. The Euclidean distances between 

the VR and real trajectories for all the balls with speed A and speed B are 
between 2m to 2.5m with normalized scores of between 0.01255 to 
0.00734, which means they are very similar (an exact trajectory will 
have a score of 0)(Berndt and Clifford, 1994). 

To analyze the ball rebound’s physics, we conducted another 
experiment in the VE to test the coefficient of restitution, which repre
sents how much the ball must rebound when it collides with a surface 
such as a table. According to the International Table Tennis Federation 
(ITTF), when the ball is dropped from a height of 30 cm it should bounce 
up about 23 cm (approximately 76.6%) (Handbook - international table 
tennis federation, 2020). Fig. 3(c) shows the results of our experiment 
where we dropped the ball and let it hit the table seven times to show 
that the ball precisely loses the energy at each collision. Our results show 
a 76.68% bounce on average for each dropping case which is an accu
racy of 99.76%. The results show that the simulated physics provides a 

Fig. 2. Overall methodology, consisting of the system design and experimental design, then generating data to evaluate the study.  

Fig. 3. Physics validation experiment setup and its results. The results show the realistic ball flight trajectory and collision behavior.  
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realistic replication of table tennis ball flight. Additionally, the profes
sional trainer tested the system to examine its validity from a profes
sional player perspective. He reported very positive feedback regarding 
the realistic behavior of the physics simulation. 

3.2. Training system and feedback loop 

The VRTT training system consists of two main parts: posture 
training and paddle controlling (ball returning) training. In this study, 
the participants are trained to learn two of the most basic table tennis 
strokes: the forehand drive and the backhand drive. Detailed in
structions were given as part of the training on correctly performing the 
maneuvers via animated images, static images, and text. The in
structions and controlling menu were shown on a feedback board placed 
in front of the trainee in the VE as shown in Fig. 1. The instructions for 
both forehand and backhand drives described below were a combination 
of instructions provided by the trainer and information from other 
professional table tennis experts (How to play table tennis, 2017). The 
instructions include the right way of poses and guidelines on paddle 
controlling techniques as well.  

• Forehand Drive The feet should be wider than shoulder-width apart, 
with the dominant foot placed about a half-step back from the non- 
dominant foot. The body should be crouched and forward with 
knees bent and arms in front of the player. Once the ball is launched, 
the player should start a backswing motion, where the player should 
rotate their body to the right and shift their weight to the back foot 
without changing the upper body position. Once the ball is near 
enough to the paddle, the player should strike the ball with the 
paddle. In this step, the player rotates their body to the left and 
forward while shifting their weight to the opposite foot. The angle of 
the paddle should be rotated forward slightly. The finishing position 
is the position of the player after striking the ball and following 
through. In the forehand maneuver, the paddle should move for
wards and up. After reaching the finishing position, the hand and 
paddle must go back to the ready position so that the player is ready 
for the next ball. 

• Backhand Drive The backhand drive’s stance differs from the fore
hand drive in that the player’s position is parallel to the edge of the 
table with both feet evenly placed. Otherwise, it is relatively similar 
to the forehand drive in that the feet separation and squat are the 
same. The player’s arms should be in front of the player, and the 
elbows should be bent. During the backswing maneuver, only the 
upper body should move. The paddle should move towards the body 
above the hip opposite the dominant hand, and the paddle should be 
slightly angled towards the table. During the strike, the paddle 
moves forward and up, the elbow largely drives the movement. As in 
the forehand drive, the paddle should follow through the strike’s 

direction during the finish. The arm should still be slightly bent. 
Afterward, the arm should return to the ready position. 

Based on these instructions, we utilized a Vicon system with 20 
cameras to obtain the professional trainer’s smooth and polished mo
tions. Then, we converted the captured motions to animations and used 
them as a predefined model (avatar) that participants need to mimic to 
learn the right playing posture. The training has both the essential 
playing maneuvers of forehand and backhand drives. In Fig. 4, (a)shows 
an example of a trainee’s posture taken with the depth camera before 
training, and (b-e) show the correct posture of forehand and backhand 
ball returns by the professional trainer. We compare the trainee’s pos
tures and the professional trainer using the joint angles to determine if 
the trainee performs well. The upper-body posture is represented by α, β, 
γ, and δ angles while ϵ, ζ, and η represent the lower-body posture. At 
each time step during training, the trainee’s joint angles are compared to 
the professional trainer’s posture. We use a depth camera (Microsoft 
Kinect 2) to collect the skeletal information of the trainee in real-time 
and compare it to a professional trainer’s pre-recorded movements in 
the VE. An error window of 10 degrees is used for angle comparison 
between the models. 

The joint angles are shown on the feedback board as the trainee 
moves in real time, and three indicators showing whether they are 
performing the correct movements. There is an indicator for the upper- 
body (arms), another for the lower-body (squatting), and the third one 
for the whole posture. Colored indicators display how closely the 
trainee’s posture and the model’s match. If the trainee’s joint angles are 
not within an acceptable range, the indicators are red, whereas if the 
joint angles are close to that of the avatar, the indicators are green. 

The sign next to each angle in Fig. 4 determines if the trainee needs to 
increase or decrease the joint angle to perform the correct posture. For 
instance, before training, the angle between the legs ϵ is small because 
the user is standing upright. However, to perform the correct posture, 
the player needs to squat; therefore, the angle needs to increase. Simi
larly, all other angles either have (+) or (-) sign showing the change 
needed to perform the correct posture. Each angle color corresponds to 
the results presented later. Angles that are not colored were not assessed; 
in particular, all participants were right-handed, and since the dominant 
hand holds the racket, we ignored the non-dominant hand. θ represents 
the angle made between the paddle face and the table surface. The 
beginner players tend to hold the paddle so that the paddle’s face makes 
a right angle with the table’s surface, sending the ball high over the net. 
Since our goal is to return lower balls, the instructions are to lower the 
paddle toward the table to have a smaller angle. 

The user (player) can move the avatar around; they can place it in 
front of them or bring it to where they are and mirror the movements. 
This gives the user the ability to observe the posture anywhere while 
seeing the angle comparison of the avatar and themselves on the feed
back board. They can also pause the animation and see the instruction in 

Fig. 4. (a) Trainees skeletal posture before training. (b-e) The postures are taken from the professional trainer and used as the gold standard for training feedback.  
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the other forms on the feedback board. The VRTT system stores all the 
raw data in real-time to regenerate the intended session for later data 
analysis. The stored data consists of the depth camera information and 
all paddle-ball-related data. We have developed a separate virtual 
environment (Data Generation Manager) to generate all the needed 
data, such as posture change over time and ball-paddle relationship 
data. Because the raw data is kept unchanged, any other desired data can 
be generated using the data generation manager. As shown in Fig. 2(c), 
the generated data is then fed to the Data Analysis System (DAS), which 
is a separate Python-based system to analyze the data. The DAS uses 
both the virtual environment data and manually collected data (ques
tionnaires) to produce the final results. The operator has full control to 
analyze data based on group, individuals, type of exercise, type of 
measured data, and many more in-depth analysis options. 

Paddle handling training consists of forehand, backhand, mixed 
(alternating forehand and backhand), and target exercises (mixed ex
ercises where the player aims to return the ball to a specific side of the 
table). The player has full control over the ball and launcher parameters 
such as ball speed, spin, launching angle, number of the balls, and 
launching speed. Besides, there are a set of pre-configured training ex
ercises that the player can use. We also developed a robotic opponent 
represented by a paddle to assist in training. 

The feedback board is used to display dynamic information. During 
posture training, it shows the posture-related instructions that the user 
can navigate (Fig. 1). When the user practices the forehand and back
hand drives, they can see the professional avatar in front of them and see 
the joint angles and posture indicators showing on the board. During 
ball returning exercise, the user sees the ball-related information such as 
speed, spin, collision angles, and the number of returned balls. We have 
designed the board to be rearranged and show the data to the user’s 
liking to offer a dynamic feedback loop, so the user is aware of the exact 
situation of their playing style. The user can also choose not to see the 
feedback to avoid feeling overwhelmed. 

4. Experimental design 

We designed an experiment to evaluate our system’s efficacy for 
motor learning by training a group of subjects for five VR training ses
sions. Fig. 2(b) shows the experimental design where the participants 
needed to go through five training sessions over three weeks, lasting 45 
minutes each. The data were collected during the VR assessment ses
sions A1 and A5 before the first and after the fifth sessions to evaluate 
the performance. The data included skeletal information, ball-paddle 
information, and questionnaires given after the sessions. We compared 
data of both sessions for statistical analysis. Since we only had one group 
and two dependent data collection points (baseline and retention), we 
used parametric paired-samples t-tests for statistical analysis to show the 
difference between pre-training and post-training data, representing the 
within-subjects training effect. The non-parametric Wilcoxon signed- 
rank tests were used in cases where normality or homogeneity of vari
ance assumptions were not met. We used the Shapiro-Wilk test for 
normality and Levene’s test for homogeneity of variances. Generally, 
parametric tests more lead to the rejection of a null hypothesis. In 
contrast, non-parametric tests are more robust, yet provide more con
servative estimates than parametric tests. 

We acquired approval from the Institutional Review Board (IRB) of 
the University of Colorado Denver before recruiting subjects for this 
study. We recruited nine subjects (four females and five males) with no 
experience in table tennis on the university campus via flyers and 
emails. During the recruitment process and before the study started, we 
emphasized the inclusion and exclusion criteria. The participants had to 
have no experience in table tennis and not be active playing other sports 
that include playing balls by hands of any sort. We wanted to prevent 
any other training factors that might affect the study in any possible 
way. The participants were between 18 to 30 years of age, and all of 
them were right-handed. Before the experiment started, the participants 

signed a consent form that detailed the study’s purpose, inclusion and 
exclusion criteria, potential benefits, and potential risks. 

The depth camera was placed in front of the player (2 m away and 1 
m above the ground) at the beginning of each session and calibrated to 
be aligned with the virtual environment. We asked the participants to 
read the instructions provided on the feedback board in the VE. The 
instructions included the correct forehand and backhand postures, the 
right way of holding the paddle, and how to return faster and lower 
balls. After reading the instructions, we asked the participants to prac
tice the postures and techniques detailed in the instructions. After 
posture training, the participants were asked to practice ball returning 
with forehand drive, backhand drive, mixed and targeted ball exercises. 
The lead researcher gave some feedback regarding the posture and 
paddle holding instructions when the participants had questions. The 
lead researcher also guided participants on using the system correctly 
and made sure they are comfortable using the headset. It’s worth 
mentioning that the feedback purpose was only for correct system usage 
and wasn’t part of the experiment. In the fourth session, the participants 
were asked to play with the robotic opponent and use an HTC Vive 
controller instead of the paddle to provide subjective feedback 
comparing natural grip and haptic feedback. 

We used the collected data in VR assessment sessions A1 and A5 to 
assess the participants’ performance. We assessed the participants’ 
posture by analyzing each technique’s joint angles (forehand and 
backhand) individually. We examined the changes in joint angles for 
each extremity except for the left arm because all of our participants 
were right-handed. Some joint angles needed to decrease from an un
trained position to move towards improved posture, whereas some joint 
angles needed to increase as shown in Fig. 4. The skeletal poses shown in 
the figures are the starting and ending poses for the techniques during 
training; we defined the starting posture as the pose of the player when 
the ball is launched, and the ending posture as the pose of the player 
when the paddle reached the highest point after returning the ball. We 
took the average of all the participants’ data to determine the average 
improvement of posture and returning technique. In this study, we 
broadly calculated body posture to include starting and finishing posi
tions to show the learning process. However, more granularity is needed 
for more detailed analysis as most existing work divides the movement 
into four phases (Wong et al., 2020). 

We calculated paddle controlling and maneuvering to assess the 
paddle handling training. The controlling angle refers to how the trainee 
held the paddle while waiting for the ball (from when it’s launched until 
the ball is hit), while the hitting angle refers to the moment the ball is 
hit. Generally, beginner players tend to hold the paddle so that the 
paddle’s face makes an approximately 90-degree angle with the table 
surface, resulting in a higher ball trajectory and slower ball speeds. 
Therefore, measuring this behavior would show their learning progress. 
We also calculated hitting paddle angle, paddle speed, ball speed, spin, 
and average ball height. 

After collecting data in VE, we surveyed the participants regarding 
the VR system on physics, haptic, audio, visuals, and the realistic rep
resentation of each simulation. The questionnaire had 18 questions 
using a Likert scale ranging from 1 to 5 (least satisfied to most satisfied), 
each with a comment section for additional qualitative feedback. The 
participants were encouraged to write detailed feedback to have sub
jective results in addition to the objective measurements. The first 7 
questions were related to self-assessment regarding how confident they 
feel playing table tennis, and the other 11 questions were related to the 
VR system. 

5. Results 

5.1. Posture 

Fig. 5 shows the average joint angles for forehand drive before and 
after training for both starting and finishing positions. The VR training 
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instructed participants to squat as shown in Fig. 4 and place their right 
foot forward for stance. However, in this data presentation, the skeleton 
is flattened to show the exact angles in two dimensions. Because of that, 
the upper-body and lower-body appear to be in the same line, while in 
the actual three-dimensional skeletal data, they are more similar to 
Fig. 4. Sub-figures (a) and (b) show the starting and finishing positions of 
the forehand drive before training with corresponding angles for each 
joint, while the sub-figures (c) and (d) show the starting and finishing 
positions of the forehand drive after training. Sub-figure (e) shows the 
change in angle for each joint. Fig. 6 shows the average joint angles for 
the backhand drive before and after training for both starting and fin
ishing positions. For the backhand drive, the player needed to squat 
lower to return balls at a lower trajectory and increase the ball speed and 
spin. 

Since the players’ stance did not change during the starting and 
finishing positions, we can see the lower-body changes are almost stable. 
This contrasts with the upper body, where the shoulder and elbow 
joints’ angles changed noticeably between the starting and finishing 
positions. The only negative joint angle change was the elbow joint 
angle during the forehand starting position, where the joint angle was 
closer to the gold standard before training. The big changes occurred in 
lower-body angles were because beginner players did not squat natu
rally. Additionally, they tended to place their arms close to the torso and 
had an open elbow angle. However, after training, the arm was further 
away from the torso, and the elbow joint had a smaller angle at the 
finishing position. Even though the skeleton was drawn in the same 
depth level, the similarity between the player’s post-training posture 
and the professional posture is evident. 

5.2. Paddle and ball 

Fig. 7 shows the data for paddle controlling and hitting. The paddle 
controlling angle decreased from 94 degrees to 69 degrees which rep
resents a 26.5% improvement. At the same time, the hitting angle 
decreased from 104 degrees to 85 degrees representing an 18.5% 
improvement. The data show that both the controlling and hitting angles 
are smaller in values after training. This shows that the trainees learned 
to keep the paddle face rotated more towards the table and be in a good 
position before hitting the ball. Another important skill participants 
learned is how to swing that paddle faster to return faster balls and apply 
spin. The paddle speed was only 1.8 m/s before the training, while this 
number increased to 3.67 m/s after training which counts for 105.7% 
improvement. 

The presented results show that the participants learned both posture 
and ball return techniques, but they don’t tell us how these learned skills 
affect ball flight trajectory. If the measurements had moved towards the 
gold standard measurement, it should be evident in the ball return 
quality. Therefore, we examined the ball flight quality (ball speed and 
height) improvement after training. Fig. 8 (a) shows ball speed before 
and after training. On average, the ball’s speed at the moment when it 
hit by the paddle increased from 6.12 m/s before training to 8.7 m/s 
after training, which is a 42.1% improvement. Fig. 8 (b) shows ball 
height. The average ball height during a return was 0.31 m before 
training, which lowered to 0.18 m after training, a 42.2% improvement. 
In contrast, as shown in Fig. 8 (c), the number of returned balls 
decreased from an average of 26 balls before training to 17 balls after 
training, representing a 33.2% decrease. This was an expected result due 
to a learning curve where participants had to unlearn a “ping-pong” 
playing style and learn professional techniques. Although the ball count 

Fig. 5. Forehand posture (a-b) show joint angle values for starting and finishing position before and after training. (e) shows the amount of change in which each bar 
color corresponds to a joint angle with the same color. 

Fig. 6. Backhand posture (a-b) show joint angle values for starting and finishing positions before and after training. (e) shows the amount of change where each bar 
color corresponds to a joint angle with the same color. 
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decreased, the ball quality improvement reflects an important change, 
as will be shown in the hypotheses testing section. Additionally, the ball 
spin, which has a critical impact on the ball trajectory, improved greatly. 
The ball spin increased from 1.55 radians/s to 3.38 radians/s, which is a 
118% increase. This change is directly related to the paddle speed and 
the hitting angle, which are outcomes of a better posture; when the 
participants squat and the returning angle is smaller, it requires faster 
paddle speeds. We clearly see that good posture, paddle control over the 
returning angle, and speed led to faster and lower balls. Furthermore, as 

seen in the angle between the legs, participants lowered their torso to hit 
lower balls. We calculated the Center of Mass (COM) based on the 
method presented in Oagaz et al. (2018) to show the torso has lowered, 
which required the players to squat and push their chest forward to 
maintain balance. The data shows that participants’ COM lowered by 
6.3% from 0.95 m to 0.89 m (the average height of the participants is 
1.75 m). 

(a)

(c)(b)

Fig. 7. Paddle handling angles and speed before and after training. In (a), the controlling angle is the average paddle angle change while waiting for the ball. (b) 
shows the paddle speed when the ball is hit. Each bar color represents the improvement of the corresponding bar color in a and b. 

Fig. 8. (a-c) Ball quality of ball speed, ball height, and the number of returned balls. (d) ball quality improvement, each color is corresponding to sub-figure a, b 
and c. 
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5.3. Questionnaire 

To analyze the quantitative composite score results from the ques
tionnaires, we averaged the participants’ answers to represent their 
overall self-confidence and satisfaction with the VR system. The results 
from the first seven questions regarding the confidence level show an 
increase by 31% from 2.85 points (out of 5) in session A1 to 3.74 points 
in session A5. The other 11 questions regarding the VR system show that 
the score increased from 4.18 points to 4.4 points, which is a 6% 
improvement. Additionally, the comments from the participants were 
generally positive, such as: “I felt deeply involved, the environment felt 
mostly realistic, and I felt that I could control the paddle accurately.”,“I feel 
more confident in my skills and overall improvement. Hand-eye coordination 
is better. Consistent returns and posture techniques helped my overall play 
style.”. Other comments referred to how the system taught them correct 
posture and paddle controlling, how the VR environment made it easier 
to focus on learning table tennis since there were no distractions, and 
how the audio feedback helped compensate for the lack of haptic feed
back when using the racket. More critical comments mentioned how the 
headset’s Field of View (FOV) made it more difficult to return balls and 
that the headset cable was distracting. 

5.4. Hypotheses testing 

A set of paired-samples t-tests with the significance level of alpha =
0.05 was conducted to compare posture before and after training. Since 
we measured the posture using joint angles, we conducted the tests for 
each joint angle separately for both forehand drive and backhand drive 
and both the starting and finishing positions. We used the Wilcoxon tests 
instead of t-tests if either normality or homogeneity of variances was 
violated. However, if the assumptions were met, t-test results are re
ported because the parametric tests are more able to reject a null hy
pothesis as mentioned before. Table 1 shows the results for the forehand 
posture. There was a significant difference in the scores for lower-body 
joint angles before and after the training for both starting and finishing 
positions. The data shows no significant difference between shoulder 
and elbow angles for the starting position. However, there is a signifi
cant difference for the ending position. 

In all cases, both normality and homogeneity of variances assump
tions were met to perform t-tests except for the left knee angle (η) in the 
finishing position that the normality assumption was violated. There
fore, we conducted a non-parametric Wilcoxon singed-rank test. The test 
results show that the difference is significant, pre-training angle (Mdn =
167.32) decreased in post-training (Mdn = 137.33); T= 0, z = -2.67, p =
0.003. These results suggest that VR training helped the participants to 
have better posture for both starting and finishing positions for forehand 
drive returns. The results also suggest that participants had a similar 
forearm placement for the starting position before training but not for 
the finishing position. However, the stance improved significantly for 
both the starting and finishing positions. Overall, the results support H1 
that states that the posture will improve significantly after five training 
sessions in VR. 

We repeated the same process for the backhand drive returning 
posture. Table 2 shows the results of the t-tests for the starting and 
finishing positions. The results suggest that the starting position 
improved significantly for all angles except the elbow angle, which 
means that the participants’ elbow angle before and after training was 
similar. The results also indicate that the overall finishing position 
changed significantly after training. These results also support H1. 
Additionally, the results of Wilcoxon test showed no significant differ
ences in the scores for COM pre-training (Mdn = 0.92) and post-training 
(Mdn = 0.89); T = 7, z = -1.84, p = 0.074. Even though the results are 
not significant, they show that the participants lowered their COM to 
produce lower ball trajectories. 

For paddle handling techniques, we conducted a set of Wilcoxon 
signed-rank tests to compare before and after training conditions. We 
decided to use non-parametric analysis for all measurements for con
sistency purposes due to parametric assumption violations for three 
measurements. There was a significant difference in the scores for the 
average paddle angle during the ball waiting time pre-training (Mdn =
102.53) and post-training (Mdn = 86.96); T = 0, z = -2.67, p = 0.004. 
There was a significant difference in paddle angle when the ball is hit 
from pre-training (Mdn = 95.32) and post-training (Mdn = 69.82); T = 0, 
z = -2.67, p = 0.004. Besides having a lower paddle hitting angle, the SD 
decreased from 6.95 to 4.36, suggesting more paddle handling consis
tency. The existing work supports this notion that higher-level players 

Table 1 
Backhand drive joint angles paired t test results.  

Joint 
Measurement 

Pre-Training Post-Training Paired t test 

Mean Std 
Dev 

Mean Std 
Dev 

t 
value 

df p (two- 
tailed) 

Forehand drive starting position 
Shoulder angle 

(α)  
35.66 4.76 37.36 7.15 -0.69 8 0.507 

Elbow angle 
(β)  

125.55 13.44 133.73 19.93 -1.14 8 0.286 

Right knee 
angle (ζ)  

172.20 3.26 138.20 15.55 7.1 8 <

0.001  
Left knee angle 

(η)  
169.31 6.52 138.34 10.52 10.39 8 <

0.001  
Between-legs 

angle (ϵ)  
40.33 9.47 74.39 10.27 -8.21 8 <

0.001  
Forehand drive finishing position 

Shoulder angle 
(α)  

53.42 12.05 64.72 15.82 -2.49 8 0.037 

Elbow angle 
(β)  

138.71 13.87 127.75 10.17 2.46 8 0.038 

Right knee 
angle (ζ)  

166.57 10.05 137.27 17.51 5.42 8 <

0.001  
Left knee angle 

(η)  
165.64 9.70 138.42 11.23 Wilcoxon conducted 

Between-legs 
angle (ϵ)  

43.47 11.61 74.11 10.34 -7.46 8 <

0.001   

Table 2 
Backhand drive joint angles paired t test results.  

Joint 
Measurement 

Pre-Training Post-Training Paired t test 

Mean Std 
Dev 

Mean Std 
Dev 

t 
value 

df p (two- 
tailed) 

Backhand drive starting position 
Shoulder 

angle (α)  
43.63 8.32 64.08 10.37 -6.26 8 <

0.001  
Elbow angle 

(β)  
109.98 12.09 101.96 13.26 1.33 8 0.218 

Right knee 
angle (ζ)  

169.82 4.25 134.80 7.18 14.47 8 <

0.001  
Left knee 

angle (η)  
166.95 14.80 131.09 8.66 7.97 8 <

0.001  
Between-legs 

angle (ϵ)  
40.51 8.20 84.68 11.65 -12.70 8 <

0.001  
Backhand drive finishing position 

Shoulder 
angle (α)  

59.38 14.74 84.47 14.85 -4.51 8 0.002 

Elbow angle 
(β)  

136.16 18.18 115.86 16.36 3.08 8 0.015 

Right knee 
angle (ζ)  

164.03 12.73 134.61 9.11 5.94 8 <

0.001  
Left knee 

angle (η)  
162.84 18.70 129.48 9.54 6.03 8 <

0.001  
Between-legs 

angle (ϵ)  
42.54 11.67 85.14 11.78 -11.31 8 <

0.001   
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tend to maintain a similar paddle angle at ball impact (Iino et al., 2017). 
There was also a significant difference in paddle speed at the hitting 
point from pre-training (Mdn = 1.65) to post-training (Mdn = 3.76); T =
0, z = -2.67, p = 0.004. The paddle controlling and hitting results sug
gest that the participants’ paddle maneuvering significantly improved 
after VR training. Thus, the results support H2 that states the paddle 
maneuvering will improve significantly after five sessions of VR 
training. 

If the forehand and backhand drive returning stance, arm move
ments, and paddle handling significantly improved, we expect to see 
improvement in ball trajectory. The results show a significant difference 
in the ball speed between pre-training (Mdn = 6.02) and post-training 
(Mdn = 8.62); T = 0, z = -2.67, p = 0.004. The results also show a sig
nificant difference in the ball spin between pre-training (Mdn = 1.34) 
and post-training (Mdn = 3.20); T = 0, z = -2.67, p = 0.004. There was a 
significant difference in the average ball height from pre-training (Mdn 
= 0.29) and post-training (Mdn = 0.17); T = 0, z = -2.67, p = 0.004.The 
results suggest that the ball quality has improved significantly. Specif
ically, the results suggest that ball trajectory and speed improved due to 
improved posture and technique. In contrast, the number of returned 
balls significantly decreased between pre-training (Mdn = 25.38) and 
post-training (Mdn = 17.38); T = 5, z = -2.67, p = 0.039. This was 
predictable as the participants went through a learning curve and were 
also instructed to focus on the ball trajectory and speed rather than the 
number of returned balls. 

The results from the first seven questions in the questionnaire 
regarding the confidence level significantly increased from pre-training 
(M = 2.85, SD = 0.63) to post-training(M = 3.74, SD = 0.51); t(8) =
-4.10, p = 0.003. Even though there was a 6% improvement in the 
participants’ evaluation of the system (the other 11 questions), no sig
nificant difference was found in pre-training (M = 4.18, SD = 0.43) and 
post-training (M = 4.39, SD = 0.35); t(8) = -1.13, p = 0.289. The average 
overall rating of 4.39 on a scale of 5 points indicates that the participants 
enjoyed the system and were comfortable using it. 

6. Discussion 

The results showed that all joint angles improved in accuracy except 
for the elbow angle, which remained relatively the same. This could be 
attributed to the participants already having a naturally good elbow 
posture before training, or possibly to a lack of attention to the elbow 
posture when focusing on paddle handling. Figs. 5 and 5 do show the 
elbow changing in position and orientation, but this is due to a drastic 
improvement in the shoulder angle. However, after examining the 
recorded skeletal data for the forehand drive, it appeared that the sub
jects tended to perform the correct movement with a small delay, which 
would have affected the comparison with the avatar. Variations in in
dividual playing styles and bodily characteristics may have played a role 
in this as well. Despite a lack of improvement in the elbow joint, this 
study’s results suggest that the efficacy of VR for learning crucial motor 
skills in table tennis is exemplary. 

Though posture and paddle handling generally improved overall, the 
results also show a significant decrease in the returned ball count. As 
mentioned in the Introduction section, this was expected due to par
ticipants undergoing a learning curve and was not the focus of the study. 
However, with more training sessions, it’s expected that the number of 
returned balls will also increase. For any generalization of this system’s 
efficacy for table tennis training in the future, the experiment design 
must include more training sessions for better outcomes in both quality 
and quantity of returned balls. 

The confidence in data interpretation and validity of the hypotheses 
greatly depends on ensuring that the study is sufficiently powered. 
Therefore, we performed a post hoc statistical power analysis for all the 
conducted paired-samples t-tests and Wilcoxon signed-rank tests using 
Gpower software for validating the sample size. We used the recom
mended power level of 0.80 and alpha of 0.05 to interpret the outcome. 

We evaluated all the aspects of the performance improvement of posture 
(joint angles), paddle controlling (paddle angles), and ball measure
ments. The results showed that for the 28 measurements we calculated 
in the Results section, only 6 were underpowered. The statistical power 
of α and β in both forehand starting and finishing positions, β of back
hand finishing position and COM were 0.08, 0.29, 0.69, 0.75, 0.24 and 
0.69 respectively. The average power for the other 22 measurements 
was 0.97. The reason for such high power despite the modest sample size 
is the big effect size of the training and the nature of the data. For 
instance, some joint angles changed significantly by simple movements. 
The fact that all the subjects improved contributed to this too, which is 
why Wilcoxon tests’ results are similar for several measurements pre
sented in the Hypothesis Testing section. The effect size and the statis
tical power will be more balanced by having a more diverse and bigger 
sample size. Finally, limited statistical power because of the modest 
sample size in the present study (n = 9) may have played a role in 
limiting the significance of some of the statistical comparisons con
ducted. A post hoc power analysis revealed considering medium effect 
size (d = 0.5), we would need an n of approximately 34 to obtain sta
tistical power at the recommended 0.80 level. For a large effect size (d =
0.8) as present in this study and statistical power of 0.95, we would need 
23 subjects. 

Defining good posture for table tennis is not straightforward, as 
playing poses can be affected by gender, body shape and body size 
(Bańkosz et al., 2020; Ren et al., 2019). For the sake of simplicity, we 
chose to train our subject population to learn the same “right” beginner 
playing techniques (forehand and backhand drives) regardless of their 
demographics. However, for these types of training platforms to be 
generalized and used for training purposes, we should incorporate 
various playing techniques and styles from numerous professional 
players into the system. Additionally, the exercises could be tailored 
toward individuals using advanced approaches such as adaptive feed
back and machine learning to accommodate the needs of a larger and 
more diverse population. 

The accurate and smooth avatar animations used to train posture and 
techniques were recorded using a Vicon tracking system. Though the 
accuracy and fast movement tracking of this tracking system would have 
provided ideal results for kinematic analysis of participants, the neces
sary calibration and fitting process of a specialty suit with optical sensors 
for this system limits the broader user study. The time, effort, and re
sources needed to capture user’s real-time movements with this system 
would make carrying out this study with a decent sample size infeasible. 
For these reasons, we chose to use the Microsoft Kinect 2, which is a 
more convenient and unobtrusive sensor. Although the Kinect is effec
tive for various sports and games (Crecente, 2013), it presents chal
lenges for fast movement tracking and is not designed for thorough and 
accurate kinematics evaluation. Furthermore, the participants’ clothing 
and body orientation toward the camera may introduce some inaccuracy 
in joint angle measurements. Despite these limitations, the camera’s 
accuracy and speed were high enough for our purposes, as the system is 
designed for beginner players with slower movements. In addition to the 
Kinect’s remote detection and ease of use, the Kinect is also low-cost, 
making it more accessible and removing barriers to adoption. As pre
sented in the Results section, we successfully used the data captured by 
Kinect to direct the trainees to correct their posture and generate 
significantly better posture, techniques, and ball outcomes. 

Racket handling is a fundamental component of a player’s technique, 
and the racket used in the VE must resemble a real racket. Though the 
racket grip and weight are similar to a real racket in our system, the 
weight distribution is different due to the tracker weight. This could 
make handling the racket feel unnatural, but participants’ feedback 
regarding the racket was positive. Because this study covers only 
training in VR and not skill transfer to the real-life sport, subtle dis
parities between the virtual racket and a real racket such as weight 
distribution and rubber quality were not of concern for this study, but 
would need to be accounted for in studies involving skill transfer or for 

H. Oagaz et al.                                                                                                                                                                                                                                  



International Journal of Human - Computer Studies 158 (2022) 102731

11

generalized use of the training platform. 
The ball behavior in the VE is also of critical importance and relies 

heavily on the simulation of ball spin. In our simulation, we imple
mented spin based on equations of known forces acting on the ball. 
However, due to hardware limitations, we did not validate ball spin 
explicitly. The inconsistency of spin and speed produced by most ball 
launchers (including the Huipang HP-07) due to manual controlling 
makes it challenging to set up a controlled environment to generate 
cases specifically for spin validation. However, a high-speed, high-res
olution camera with a highly accurate ball launcher could capture spin 
changes. Even though we didn’t validate spin separately, we can infer 
from the ball flight validation results (Fig. 3(b)) that the ball accurately 
rebounds off the table, showing a realistic transmission of energy and 
spin between the ball and the table. Additionally, the coefficient of 
restitution in the VE, which relies on correct spin simulation, showed an 
accuracy of 99.76%. The subjective feedback from the professional 
trainer and the participants also indicated that the ball’s behavior was 
realistic; as one participant reported, “The ball flight and physics appeared 
natural to me.”. 

In future work, we plan to investigate table tennis’s learning curve in 
VR by having multiple groups, each with different training sessions. 
We’re also interested in exploring questions of skill transferability and 
VR training effectiveness compared to real-life training as this study 
focuses on learning motor skills in VR only. The broader future goal in 
developing this system is to create a tool that would allow us to inves
tigate the motor learning process in VR and determine what components 
are most important for effective learning. Many important questions 
remain on this front, such as what hardware specifications and what 
level of physics simulations are enough to provide the same level of 
realness as the real training? What aspects of virtual training are 
necessary, and what are secondary? If these questions are appropriately 
addressed, they could enable the development of more effective VR 
training systems for various domains. 

7. Conclusion 

This paper has demonstrated the unique ability of VR’s real-time 
feedback to promote the learning of fine-grained motor skills neces
sary to perform common table tennis maneuvers correctly. We have 
developed a VR table tennis system that trains beginner players by 
providing real-time feedback on posture and technique. The system 
provides a realistic table tennis environment with near-real ball flight 
and collision behaviors. We have validated our system by demonstrating 
that the nine recruited beginner players had significant changes in 
posture and technique after five training sessions with the system. We 
also showed that learning correct posture and technique leads to an 
immediate improvement in ball quality outcomes. Besides showing our 
system’s efficacy for motor learning, this work offers a low-cost, 
remotely accessible, and beginner-friendly VR table tennis training 
platform. In this study, we only covered motor learning in VR specif
ically, not skill transfer to real-world performance or VR training 
effectiveness compared to the real training. In the future, we plan to use 
this system to investigate the learning process to determine which var
iables make the most significant difference in learning outcomes. 
Furthermore, our outcomes can be used to allow further investigation 
into training transfer from VR to real-world performance and compare 
VR training to real training. 
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